Skip to main content

On the Inapproximability of Polynomial-programming, the Geometry of Stable Sets, and the Power of Relaxation

  • Chapter
Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

  • 1515 Accesses

Abstract

The present paper introduces the geometric rank as a measure for the quality of relaxations of certain combinatorial optimization problems in the realm of polyhedral combinatorics. In particular, this notion establishes a tight relation between the maximum stable set problem from combinatorial optimization, polynomial programming from integer non linear programming and norm maximization, a basic problem from convex maximization and computational convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bellare and P. Rogaway, The complexity of appro6ximating a nonlinear program, Math. Prog. 69 (1995), 429-441.

    MathSciNet  MATH  Google Scholar 

  2. A. Brieden, On geometric optimization problems likely not contained in APX, Discrete Comp. Geom. 28 (2002), 201-209.

    MathSciNet  MATH  Google Scholar 

  3. A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lov¡äasz, and M. Simonovits, Deterministic and randomized polynomial-time approximation of radii, Mathematika, 2003, in print.

    Google Scholar 

  4. A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lov¡äasz, and M. Simonovits, Approximation of radii and norm-maxima: Randomization doesn’t help, Proc. 39th IEEE FOCS, 1998, pp. 244-251.

    Google Scholar 

  5. A. Brieden, P. Gritzmann, and V. Klee, Inapproximability of some geometric and quadratic optimization problems, In: Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems (P.M. Pardalos, ed.), Nonconvex Optimization and its Applications, vol. 42, Kluwer (Boston), 2000, pp. 96-115.

    Google Scholar 

  6. R. Boppana and M.M. Halld¡äorsson, Approximating maximum independent sets by excluding subgraphs, BIT 32 (1992), 180-196.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ch. Ebenegger, P.L. Hammer, and D. de Werra, Pseudo-boolean functions and stability of graphs, In: ¡®Algebraic and Combinatorial Methods in Operations Research’ (R.E. Burkard, R.A. Cunninghame-Green, and U. Zimmermann, eds.), Ann. of Discrete Math., vol. 19, Elsevier Science Publisher B.V. (North-Holland), 1984, pp. 83-98.

    Google Scholar 

  8. L. Engebretsen and J. Holmerin, Clique is hard to approximate within n1−o(1), Proc. 27th ICALP, 2000, pp. 2-12.

    Google Scholar 

  9. P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes in finite dimensional normed spaces, Math. Prog. 59 (1993), 163-213.

    Article  MathSciNet  MATH  Google Scholar 

  10. M.X. Goemans, Worst-case comparison of valid inequalities for the TSP, Math. Prog. 69 (1995), 335-349.

    MathSciNet  MATH  Google Scholar 

  11. M. Gr¡§otschel, L. Lov¡äasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988, 2nd ed. 1993.

    Google Scholar 

  12. J. Håastad, Clique is hard to approximate within n1−_, ActaMath. 182 (1999), 105-142

    MathSciNet  Google Scholar 

  13. J. Håastad, Clique is hard to approximate within n1−_, Proc. 37th IEEE FOCS, 1996, pp. 627-636.

    Google Scholar 

  14. T. Jansen, Introduction to the theory of complexity and approximation algorithms, In: Lectures on Proof Verification and Approximation Algorithms (E.W. Mayr, H.J. Pr¡§omel and A. Steger, eds.), Lecture Notes in Computer Science, vol. 1367, Springer (Berlin), 1998, pp. 5-28.

    Google Scholar 

  15. J. Lee and W.D. Morris Jr, Geometric comparison of combinatorial polytopes, Discrete Appl. Math. 55 (1994), 163-182.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brieden, A., Gritzmann, P. (2003). On the Inapproximability of Polynomial-programming, the Geometry of Stable Sets, and the Power of Relaxation. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics