Advertisement

Investigation of t + t collisions using the ACCULINNA beam line

  • M. S. Golovkov
  • Yu. Ts. Oganessian
  • D. D. Bogdanov
  • A. S. Fomichev
  • A. M. Rodin
  • S. I. Sidorchuk
  • R. S. Slepnev
  • S. V. Stepantsov
  • G. M. Ter-Akopian
  • R. Wolski
  • V. A. Gorshkov
  • M. L. Chelnokov
  • E. M. Kozulin
  • A. A. Bogatchev
  • N. A. Kondratiev
  • I. V. Korzyukov
  • F. Hanappe
  • T. Materna
  • L. Stuttge
  • A. H. Ninane
  • A. A. Korsheninnikov
  • E. Yu. Nikolski
  • I. Tanihata
  • P. Roussel-Chomaz
  • W. Mittig
Conference paper

Abstract

Recently, an environmentally safe liquid-tritium target [1] was installed at the radioactive beam line of the ACCULINNA [2] separator working with primary beams of the U-400M cyclotron. The target cell has a material thickness of 0.4 mm for tritium, a beam opening of 10 mm diameter and the entrance and exit windows closed with two pairs of 12-μm stainless steel foils. The first experiment with the target was perfomed on a primary beam of 58 MeV tritons from the U-400M cyclotron. The separator ion optics was used to select a beam having energy and angulardistribution widths of > 0.5% and > 0.5°, respectively. Being delivered to the target the triton beam with an intensity of 1 x 107 s−1 was focused in a 4-mm spot. The detection system consisted of two large-area position-sensitive Si telescopes for charged particles and a neutron wall based on 41 DEMON [3] modules. The parameters of the experiment were optimized in such a way that the target thickness, beam energy spread and angular resolution made comparable contributions to the overall energy resolution. As an example, the resolution of the two-neutron transfer reaction which leads to 5H formation should be about 300 keV in the scale of excitation energy of the resonance.

Keywords

Primary Beam Coincidence Spectrum Exit Window Stainless Steel Foil Beam Opening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Yukhimchuk et al., to be submitted to Nucl. Instrum. Methods.Google Scholar
  2. 2.
    A.M. Rodin et al., Nucl. Instrum. Methods B 126, 236 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    S. Mouatassim et al., Nucl. Instrum. Methods A 359, 330 (1995) and A 365, 446 (1995).CrossRefGoogle Scholar
  4. 4.
    S. Blagus et al., Phys.Rev.C 44, 325 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. S. Golovkov
    • 1
  • Yu. Ts. Oganessian
    • 1
  • D. D. Bogdanov
    • 1
  • A. S. Fomichev
    • 1
  • A. M. Rodin
    • 1
  • S. I. Sidorchuk
    • 1
  • R. S. Slepnev
    • 1
  • S. V. Stepantsov
    • 1
  • G. M. Ter-Akopian
    • 1
  • R. Wolski
    • 1
  • V. A. Gorshkov
    • 1
  • M. L. Chelnokov
    • 1
  • E. M. Kozulin
    • 1
  • A. A. Bogatchev
    • 1
  • N. A. Kondratiev
    • 1
  • I. V. Korzyukov
    • 1
  • F. Hanappe
    • 2
  • T. Materna
    • 2
  • L. Stuttge
    • 3
  • A. H. Ninane
    • 4
  • A. A. Korsheninnikov
    • 5
  • E. Yu. Nikolski
    • 5
  • I. Tanihata
    • 5
  • P. Roussel-Chomaz
    • 6
  • W. Mittig
    • 6
  1. 1.Flerov Laboratory of Nuclear ReactionsJINRDubnaRussia
  2. 2.Université Libre de BruxellesBruxellesBelgium
  3. 3.Institut de Recherches SubatomiquesStrasbourg CedexFrance
  4. 4.Nuclear Physics DepartmentUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.RIKENWako, SaitamaJapan
  6. 6.GANILCaen Cedex 5France

Personalised recommendations