Intense radioactive-ion beams produced with the ISOL method

  • U. Köster
Conference paper

Abstract

For fifty years the isotope separation on-line (ISOL) technique has been used for the production of radioactive-ion beams (RIBs). Thick-target ISOL facilities can provide very intense RIBs for a wide range of applications. The important design parameters for an ISOL facility are efficiency, rapidity and selectivity of all steps of the separation process. To achieve the anticipated beam intensities with the next-generation RIB facilities, the production rate in the ISOL target has to be increased by orders of magnitude. This is only possible by adapting the projectile beam for optimum production cross-sections and simultaneously minimizing the target heating due to the electronic stopping power of charged-particle projectiles. ISOL beams of 75 different elements have been produced up to now and further beam development is under way to produce a still greater variety of isotopes and to improve existing beams in intensity and purity.

PACS

25.40.Sc Spallation reactions 25.85.Ec Neutron-induced fission 25.85.Ge Charged-particle induced fission 25.85.Jg Photofission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kofoed-Hansen, K.O. Nielsen, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 1 (1951).Google Scholar
  2. 2.
    D. Forkel-Wirth, G. Bollen (Editors), ISOLDE — a laboratory portrait, Hyperfine Interact. 129 (2000).Google Scholar
  3. 3.
    U. Köster, Prog. Part. Nucl. Phys. 46, 411 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    G.G. Ball et al., Phys. Rev. Lett. 86, 1454 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    H.L. Ravn et al., Nucl. Instrum. Methods B 26,183 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    J.R.J. Bennett, Nucl. Instrum. Methods B 126, 105 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    W.L. Talbert et al., Nucl. Phys. A 701, 303 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Nolen et al., Nucl. Phys. A 701, 312 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    P. Bricault, in CAARI 16, edited by J.L. Duggan, I.L. Morgan, AIP Conf. Proc. 576, 239 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    B. Fogelberg et al., in Research with Fission Fragments, edited by T. von Egidy et al. (World Scientific, 1997) pp. 69–73.Google Scholar
  11. 11.
    J. Lettry et al., Nucl. Instrum. Methods B 126, 170 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Putaux et al., Nucl. Instrum. Methods B 126, 113 (1997).CrossRefADSGoogle Scholar
  13. 13.
    V.N. Panteleev et al., Nucl. Phys. A 701, 470 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Pinston, Nucl. Instrum. Methods B 126, 22 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    P.W. Schmor, Nucl. Phys. A 701, 480 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    U. Köster et al., in Research with Fission Fragments, edited by T. von Egidy et al. (World Scientific, 1997) pp. 29–40.Google Scholar
  17. 17.
    T. von Egidy et al., Acta Phys. Slovaca 49, 107 (1999).Google Scholar
  18. 18.
    O. Kofoed-Hansen, in 3rd International Conference on Nuclei far from Stability, Cargèse (CERN 76–13, Geneva, 1976) pp. 65-70.Google Scholar
  19. 19.
    J.A. Nolen, in RNB 3, edited by D.J. Morrissey (Editions Frontières, Gif-sur-Yvette, 1993) pp. 111-114.Google Scholar
  20. 20.
    F. Clapier et al., Phys. Rev. ST Accel. Beams 1, 013501 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. Kandri-Rody et al., Nucl. Instrum. Methods B 160, 1 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    G.S. Bauer, Nucl. Instrum. Methods A 463, 505 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Nolen et al., in HIAT’98, edited by K.W. Shepard, AIP Conf. Proc. 473, 477 (1998).ADSGoogle Scholar
  24. 24.
    V.N. Panteleev et al., High temperature uranium carbide targets, poster contribution, to be published in Exotic Nuclei and Atomic Masses (Springer-Verlag, Heidelberg, 2002).Google Scholar
  25. 25.
    R. Catherall et al., Measurement of the production cross-sections of neutrino-rich Kr and Xe isotopes, poster contribution, to be published in Exotic Nuclei and Atomic Masses (Springer-Verlag, Heidelberg, 2002).Google Scholar
  26. 26.
    W.T. Diamond, Nucl. Instrum. Methods A 432, 471 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    Yu.Ts. Oganessian et al., Nucl. Phys. A 701, 87 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    F. Ibrahim et al., to be published in Eur. Phys. J. A (2002).Google Scholar
  29. 29.
    M. Gloris et al., Nucl. Instrum. Methods A 463, 593 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    U. Georg et al., Nucl. Phys. A 701, 137 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    M. Langevin et al., Phys. Lett. B 125, 116 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    M.V. Ricciardi et al., Nucl. Phys. A 701, 156 (2002).CrossRefADSGoogle Scholar
  33. 33.
    R.L. Folger et al., Phys. Rev. 98, 107 (1955).ADSCrossRefGoogle Scholar
  34. 34.
    A.A. Caretto et al., Phys. Rev. 110, 1130 (1958).ADSCrossRefGoogle Scholar
  35. 35.
    J. Hudis, S. Tanaka, Phys. Rev. 171, 1297 (1968).ADSCrossRefGoogle Scholar
  36. 36.
    U. Köster for the ISOLDE Collaboration, Radiochim. Acta 89,749 (2001).CrossRefGoogle Scholar
  37. 37.
    C.O. Engelmann, PhD Thesis, Tübingen University (1998).Google Scholar
  38. 38.
    A. Stolz, PhD Thesis, TU München (2001).Google Scholar
  39. 39.
    Proceedings EMIS 11, Nucl. Instrum. Methods B 26 (1987).Google Scholar
  40. 40.
    Proceedings EMIS 12, Nucl. Instrum. Methods B 70 (1992).Google Scholar
  41. 41.
    Proceedings EMIS 13, Nucl. Instrum. Methods B 126 (1997).Google Scholar
  42. 42.
    R. Kirchner, E. Roeckl, Nucl. Instrum. Methods 133, 187 (1976).ADSCrossRefGoogle Scholar
  43. 43.
    R. Kirchner, Rev. Sci. Instrum. 67, 928 (1996).ADSCrossRefGoogle Scholar
  44. 44.
    R. Kirchner et al., Nucl. Instrum. Methods B 70, 56 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    R. Geller, Electron Gyclotron Resonance Ion Sources and EGR Plasmas (IOP, Bristol, 1996).Google Scholar
  46. 46.
    A.C.C. Villari et al., in CAARI 16, edited by J.L. Duggan, I.L. Morgan, AIP Conf. Proc. 576, 254 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    R. Kirchner, Nucl. Instrum. Methods A 292, 203 (1990).ADSCrossRefGoogle Scholar
  48. 48.
    U. Köster, Nucl. Phys. A 701, 441 (2002).ADSCrossRefGoogle Scholar
  49. 49.
    U. Köster et al., Hyperfine Interact. 127, 417 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    N. Severijns et al., Phys. Rev. Lett. 63, 1050 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    M. Gaelens et al., Nucl. Instrum. Methods B 126, 125 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    M. Gaelens et al., in CAARI 15, edited by J.L. Duggan, I.L. Morgan, AIP Conf. Proc. 475, 305 (1998).ADSGoogle Scholar
  53. 53.
    M. Gaelens et al., Eur. Phys. J. A 11, 413 (2001).ADSCrossRefGoogle Scholar
  54. 54.
    M. Loiselet et al., in CAARI 16, edited by J.L. Duggan, I.L. Morgan, AIP Conf. Proc. 576, 269 (2000).ADSCrossRefGoogle Scholar
  55. 55.
    http://www.cern.ch/ISOLDE/norrnal/isoprodsc.htrnl.Google Scholar
  56. 56.
    J. Powell et al., Nucl. Instrum. Methods A 455, 452 (2000).ADSCrossRefGoogle Scholar
  57. 57.
    J.T. Burke et al., submitted to Rev. Sei. Instrum. (2002).Google Scholar
  58. 58.
    Z.Q. Xie et al., Nucl. Instrum. Methods B 168, 117 (2000).ADSCrossRefGoogle Scholar
  59. 59.
    D. Wutte, LBL, private communication.Google Scholar
  60. 60.
    S. Gibouin, PhD Thesis, Université de Caen (2002).Google Scholar
  61. 61.
    N. Lecesne et al., Nucl. Instrum. Methods B 126, 141 (1997).ADSCrossRefGoogle Scholar
  62. 62.
    J. D’Auria for the DRAGON Collaboration, Nuclear Astrophysics at ISAG with DRAGON, to be published in Exotic Nuclei and Atomic Masses (Springer-Verlag, Heidelberg, 2002).Google Scholar
  63. 63.
    J. Eberz et al., Z. Phys. A 326, 121 (1987).ADSGoogle Scholar
  64. 64.
    J. Szerypo et al., Z. Phys. A 359, 117 (1997).ADSCrossRefGoogle Scholar
  65. 65.
    K. Schmidt et al., Nucl. Phys. A 701,115 (2002).CrossRefADSGoogle Scholar
  66. 66.
    K. Rykaczewski et al., Phys. Rev. C 52, R2310 (1995).ADSCrossRefGoogle Scholar
  67. 67.
    M.L. Muchnik et al., Sov. J. Quantum Electron. 13, 1515 (1983).ADSCrossRefGoogle Scholar
  68. 68.
    J. Döring et al., GSI seientific report 2000, p. 9.Google Scholar
  69. 69.
    U. Köster, PhD Thesis, TU München (2000).Google Scholar
  70. 70.
    R. Silberberg, C.H. Tsao, Phys. Rep. 191, 351 (1990).ADSCrossRefGoogle Scholar
  71. 71.
    W. Reisdorf, Z. Phys. A 300,227 (1981).ADSCrossRefGoogle Scholar
  72. 72.
    K.L. Kratz et al., Z. Phys. A 340, 419 (1991).ADSCrossRefGoogle Scholar
  73. 73.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988).ADSCrossRefGoogle Scholar
  74. 74.
    A.N. Zherikhin et al., Appl. Phys. B 30, 47 (1983).ADSCrossRefGoogle Scholar
  75. 75.
    G. Rudstam et al., Radiochim. Acta 49, 155 (1990).Google Scholar
  76. 76.
    B. Fogelberg et al., Nucl. Instrum. Methods B 70, 137 (1992).ADSCrossRefGoogle Scholar
  77. 77.
    M. Huhta et al., Nucl. Instrum. Methods B 126, 201 (1997).ADSCrossRefGoogle Scholar
  78. 78.
    http://www-aix.gsi.de/~rnsep/ionsource.htrnl.Google Scholar
  79. 79.
    N. Lecesne, PhD Thesis, Université de Caen (1997).Google Scholar
  80. 80.
    C.F. Liang et al., Z. Phys. A 309, 185 (1982).ADSCrossRefGoogle Scholar
  81. 81.
    A. Türler, this issue, p. 271.Google Scholar
  82. 82.
    J. Sauvage et al., Hyperfine Interact. 129, 303 (2000).ADSCrossRefGoogle Scholar
  83. 83.
    J. Äystö, Nucl. Phys. A 693, 477 (2001).ADSCrossRefGoogle Scholar
  84. 84.
    M. Huyse et al., Nucl. Instrum. Methods B 187, 535 (2002).ADSCrossRefGoogle Scholar
  85. 85.
    J. Dilling et al., Hyperfine Interact. 127, 491 (2000).ADSCrossRefGoogle Scholar
  86. 86.
    D.J. Morrissey, this issue, p. 105.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • U. Köster
    • 1
  1. 1.CERN, ISOLDEGeneva 23Switzerland

Personalised recommendations