Advertisement

Status and prospects of synthesizing superheavy elements

  • S. Hofmann
Conference paper
  • 233 Downloads

Abstract

The nuclear shell model predicts that the next doubly magic shell-closure beyond 208Pb is at a proton number between Z = 114 and 126 and at a neutron number N = 184. The outstanding aim of experimental investigations is the exploration of this region of spherical “Superheavy Elements”. This article describes the experiments that were performed at the GSI SHIP. They resulted in an unambiguous identification of elements 107 to 112. They were negative so far in searching for elements 113, 116 and 118 at SHIP; however, positive results were reported from experiments in Dubna on elements 114 and 116 and from experiments in Berkeley on element 118. The measured decay data are compared with theoretical predictions. Some aspects concerning the reaction mechanism and the use of radioactive beams are also presented.

PACS

21.10.Dr Binding energies and masses 23.60.+e Alpha decay 25.70.-z Low and intermediate energy heavy-ion reactions 25.85.Ca Spontaneous fission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    Yu.Ts. Oganessian, Nucl. Phys. A 685 17c (2001).ADSCrossRefGoogle Scholar
  3. 3.
    V.K. Utyonkov et al, this issue, p. 20f.Google Scholar
  4. 4.
    V. Ninov et al., Phys. Rev. Lett. 83, 1104 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    V. Ninov et al, submitted to Phys. Rev. Lett.Google Scholar
  6. 6.
    R. Smolanczuk, A. Sobiczewski, Proceedings of the XV Nuclear Physics Divisional Conference on Low Energy Nuclear Dynamics, St. Petersburg, Russia, April 18-22, 1995, edited by Yu.Ts. Oganessian et al. (World Scientific, Singapore, 1995) p. 313.Google Scholar
  7. 7.
    S. Ćwiok et al, Nucl. Phys. A 611, 211 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Lalazissis et al, Nucl. Phys. A 608, 202 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    K. Rutz et al, Phys. Rev. C 56, 238 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    A.T. Kruppa et al, Phys. Rev. C 61, 034313 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    R. Smolanczuk et al, Phys. Rev. C 52, 1871 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    Yu.Ts. Oganessian et al, Phys. Rev. C 63, 011301–1 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    S. Hofmann et al, Eur. Phys. J. A 10, 5 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    A. Türler, this issue, p. 271.Google Scholar
  15. 15.
    P. Möller et al, At. Data Nucl. Data Tables 66, 131 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    P. Möller et al, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    S. Hofmann et al, Z. Phys. A 354, 229 (1996).ADSGoogle Scholar
  18. 18.
    Yu.Ts. Oganessian et al, Nature 400, 242 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    Yu.Ts. Oganessian et al, Phys. Rev. Lett. 83, 3154 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    S. Hofmann et al, Z. Phys. A 350, 277 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    A. Ghiorso et al, Nucl. Phys. A 583, 86fc (1995).CrossRefGoogle Scholar
  24. 24.
    A. Ghiorso et al, Phys. Rev. C 51, R2293 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    Yu.A. Lazarev et al, Phys. Rev. Lett. 75, 1903 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    Yu.A. Lazarev et al, Phys. Rev. C 54, 620 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    S. Hofmann et al, Z. Phys. A 350, 281 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    S. Hofmann et al, Scientific Report 2000, GSI Report 2001-1, f (2001).Google Scholar
  29. 29.
    R. Smolanczuk, Phys. Rev. C 59, 2634 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    C. Stodel, S. Grevy, Nouvelles du Ganil, Report no. 67, 3 (2001).Google Scholar
  31. 31.
    K. Morita, private communication (2000).Google Scholar
  32. 32.
    RIA, The Rare Isotope Accelerator Project, www.phy.anl.gov/ria (2000).Google Scholar
  33. 33.
    G.G. Adamian et al, Nucl. Phys. A 678, 24 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    G.G. Adamian et al, Phys. Rev. C 62, 064303–1 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    E.A. Cherepanov, Pramana J. Phys. 53, 619 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    V.Yu. Denisov, S. Hofmann, Phys. Rev. C 61, 034606–f (2000).ADSCrossRefGoogle Scholar
  37. 37.
    G. Giardina et al, Eur. Phys. J. A 8, 205 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    R. Smolanczuk, Phys. Rev. C 63, 044607–f (2001).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Aritomo et al, Phys. Rev. C 59, 796 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    V.I. Zagrebaev, Proceedings of the International Workshop on Fusion Dynamics at the Extremes, Dubna Russia, May 25-21, 2000 (World Scientific, Singapore, 2001) p. 215.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Hofmann
    • 1
  1. 1.Gesellschaft für Schwerionenforschung mbHDarmstadtGermany

Personalised recommendations