Skip to main content

Hadron Colliders, the Standard Model, and Beyond

  • Conference paper
Hadron Collider Physics 2002
  • 100 Accesses

Abstract

Quantum field theory eombines the two great achievements of 20t h-century physies, quantum mechanies and relativity. The standard model is a partieular quantum field theory, based on the set of fields displayed in Table 1, and the gauge symmetries SU(3) x SU(2) x U(1) y . There are three generations of quarks and leptons, labeled by the index i = 1,2,3, and one Higgs field, φ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Willenbrock, to appear in the Proceedings of the Advanced Study Institute on Techniques and Concepts of High Energy Physics, St. Croix, U. S. Virgin Islands, June 13-24, 2002, arXiv:hep-ph/0211067.

    Google Scholar 

  2. K. Hagiwara et al [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).

    Article  ADS  Google Scholar 

  3. M. S. Chanowitz, Phys. Rev. D 66, 073002 (2002) [arXiv:hep-ph/0207123].

    Article  ADS  Google Scholar 

  4. G. P. Zeller et al. [NuTeV Collaboration], Phys. Rev. Lett. 88, 091802 (2002) [arXiv:hep-ex/0110059].

    Article  ADS  Google Scholar 

  5. C. Quigg, Phys. Today 50N5, 20 (1997).

    Article  Google Scholar 

  6. A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, Eur. Phys. J. C 21, 225 (2001) [arXiv:hep-ph/0104062].

    Article  ADS  Google Scholar 

  7. T. Affolder et al [CDF Collaboration], Phys. Rev. Lett. 86, 3233 (2001) [arXiv:hep-ex/0012029].

    Article  ADS  Google Scholar 

  8. T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. D 58, 094021 (1998) [arXiv:hep-ph/9807340].

    Article  ADS  Google Scholar 

  9. T. Affolder et al [CDF Collaboration], Phys. Rev. Lett. 84, 216 (2000) [arXiv:hep-ex/9909042].

    Article  ADS  Google Scholar 

  10. G. Mahlon and S. Parke, Phys. Lett. B 411, 173 (1997) [arXiv:hepph/9706304].

    Article  ADS  Google Scholar 

  11. G. Mahlon and S. Parke, Phys. Rev. D 55, 7249 (1997) [arXiv:hepph/9611367].

    Article  ADS  Google Scholar 

  12. A. Stange, W. J. Marciano and S. Willenbrock, Phys. Rev. D 49, 1354 (1994) [arXiv:hep-ph/9309294].

    Article  ADS  Google Scholar 

  13. J. Goldstein, C. S. Hill, J. Incandela, S. Parke, D. Rainwater and D. Stuart, Phys. Rev. Lett. 86, 1694 (2001) [arXiv:hep-ph/0006311].

    Article  ADS  Google Scholar 

  14. T. Han and R. J. Zhang, Phys. Rev. Lett. 82, 25 (1999) [arXiv:hepph/9807424].

    Article  ADS  Google Scholar 

  15. M. Carena et al, “ Report of the Tevatron Higgs Working Group,” arXiv:hepph/0010338.

    Google Scholar 

  16. D. Rainwater, D. Zeppenfeld and K. Hagiwara, Phys. Rev. D 59, 014037 (1999) [arXiv:hep-ph/9808468].

    Article  ADS  Google Scholar 

  17. D. Rainwater and D. Zeppenfeld, Phys. Rev. D 60, 113004 (1999) [Erratumibid. D 61, 099901 (2000)] [arXiv:hep-ph/9906218].

    Article  ADS  Google Scholar 

  18. D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Phys. Rev. D 62, 013009 (2000) [arXiv:hep-ph/0002036].

    Article  ADS  Google Scholar 

  19. E. Braaten and S. Fleming, Phys. Rev. Lett. 74, 3327 (1995) [arXiv:hepph/9411365].

    Article  ADS  Google Scholar 

  20. M. Kramer, Prog. Part. Nucl. Phys. 47, 141 (2001) [arXiv:hep-ph/0106120].

    Article  ADS  Google Scholar 

  21. T. Affolder et al [CDF Collaboration], Phys. Rev. Lett. 85, 2886 (2000) [arXiv:hep-ex/0004027].

    Article  ADS  Google Scholar 

  22. P. Nason, S. Dawson and R. K. Ellis, Nucl. Phys. B 327, 49 (1989) [Erratumibid. B 335, 260 (1990)].

    Article  ADS  Google Scholar 

  23. W. Beenakker, H. Kuijf, W. L. van Neerven and J. Smith, Phys. Rev. D 40, 54 (1989).

    Article  ADS  Google Scholar 

  24. M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, arXiv:hep-ph/0206293.

    Google Scholar 

  25. F. Maltoni and T. Stelzer, arXiv:hep-ph/0208156.

    Google Scholar 

  26. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, arXiv:hep-ph/0209271.

    Google Scholar 

  27. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

    Article  ADS  Google Scholar 

  28. F. Maltoni, J. M. Niczyporuk and S. Willenbrock, Phys. Rev. D 65, 033004 (2002) [arXiv:hep-ph/0106281].

    Article  ADS  Google Scholar 

  29. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willenbrock, S. (2003). Hadron Colliders, the Standard Model, and Beyond. In: Erdmann, M., Müller, T. (eds) Hadron Collider Physics 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55524-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55524-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62472-8

  • Online ISBN: 978-3-642-55524-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics