Fine-Grid Simulations of Thermally Activated Switching in Nanoscale Magnets

  • P. A. Rikvold
  • G. Brown
  • M. A. Novotny
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 90)


Numerical integration of the Landau-Lifshitz-Gilbert equation with thermal fluctuations is used to study the dynamic response of single-domain nano- magnets to rapid changes in the applied magnetic field. The simulation can resolve magnetization patterns within nanomagnets and uses the Fast Multipole method to calculate dipole-dipole interactions efficiently. The thermal fluctuations play an essential part in the reversal process whenever the applied field is less than the zero- temperature coercive field. In this situation pillar-shaped nanomagnets are found to reverse through a local mode that involves the formation and propagation of a domain wall. Tapering the ends of the pillars to reduce pole-avoidance effects changes the energies involved but not the fundamental process. The statistical distribution of switching times is well described by the independent nucleation and subsequent growth of regions of reversed magnetization at both ends of the pillar


Applied Magnetic Field Coercive Field Thermal Fluctuation Fast Multipole Method Magnetization Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Rikvold, M.A. Novotny, M. Kolesik, H.L. Richards: “Nucleation Theory of Magnetization Reversal in Nanoscale Ferromagnets”. In: Dynamical Properties of Unconventional Magnetic Systems, ed. by T. Skjeltorp, D. Sherrington (Kluwer, Dordrecht 1998) p. 307CrossRefGoogle Scholar
  2. 2.
    P.A. Rikvold, G. Brown, S.J. Mitchell, M.A. Novotny: “Dynamics of Magnetization Reversal in Models of Magnetic Nanoparticles and Ultrathin Films”. In: Nanostructured Magnetic Materials and their Applications, ed. by D. Shi, B. Aktas, L. Pust, F. Mikailov (Springer, Berlin Heidelberg New York 2002) p. 184Google Scholar
  3. 3.
    S. Wirth, M. Field, D.D. Awschalom, S. von Molnár: Phys. Rev. B 57, R14028 (1998); J. Appl. Phys. 85, 5249 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Brown: Phys. Rev. 130, 1677 (1963)ADSCrossRefGoogle Scholar
  5. 5.
    A. Aharoni: Introduction to the Theory of Ferromagnetism (Clarendon, Oxford 1996)Google Scholar
  6. 6.
    G. Brown, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 64, 134422 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    G. Brown, M.A. Novotny, P.A. Rikvold: J. Appl. Phys. 87, 4792 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    G. Brown, M.A. Novotny, P.A. Rikvold: “Determining the Saddle Point in Micromagnetic Models of Magnetization Switching”. In: Computer Simulation Studies in Condensed Matter Physics XV, ed. by D.P. Landau, S.P. Lewis, H.-B. Schüttler (Springer, Berlin Heidelberg New York 2003) (This volume)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. A. Rikvold
    • 1
    • 2
  • G. Brown
    • 1
    • 3
  • M. A. Novotny
    • 4
  1. 1.School of Computational Science and Information TechnologyFlorida State UniversityTallahasseeUSA
  2. 2.Center for Materials Research and Technology and Department of PhysicsFlorida State UniversityTallahasseeUSA
  3. 3.Center for Computational SciencesOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Physics and AstronomyMississippi State UniversityMississippi StateUSA

Personalised recommendations