Simulating Semiconductor Liquids with Ab Initio Pseudopotentials and Quantum Forces

  • J. R. Chelikowsky
  • M. Jain
  • J. J. Derby
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 90)


One of the most difficult problems in materials science is simulating the microscopic liquid state. Often interatomic forces crafted from classical potentials are employed in such simulations. These potentials are fit to experimental data and may not replicate the true forces in the melt. Here we illustrate how quantum forces can be used to simulate liquids. These forces are determined within the pseudopotential-density functional method. This method is highly accurate and well tested for semiconductor in the solid state, but has only recently been applied to liquids. We will illustrate this approach for Si, GaAs and ZnTe liquids. For these liquids, we will present results for the microstructure, the diffusion constants and the electronic properties


Radial Distribution Function Diffusion Constant Plane Wave Basis Langevin Dynamic Microcanonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.M. Glazov and O.D. Shchelikov: 18, 411 (1984); V.M. Glazov, S.N. Chizhevskaya and N.N. Glagoleva: Liquid Semiconductors (Plenum Press, 1969)Google Scholar
  2. 2.
    I. Stich, R. Car and M. Parrinello: Phys. Rev. Lett. 63, 2240 (1989); Q.-M. Zhang, G. Chiarotti, A. Selloni, R. Car and M. Parrinello: Phys. Rev. B 42, 5071 (1990); R.V. Kulkarni and D. Stroud: Phys. Rev. B 62, 4991 (2000); R.V. Kulkarni and D. Stroud: Phys. Rev. B 55, 6896 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Chelikowsky, J.J. Derby, V. Godlevsky, M. Jain and Y.R. Raty: J. Phys. Cond. Matt. 13, R817 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    G. Ciccotti, D. Frenkel, and I.R. McDonald (Eds.): Simulation of Liquids and Solids (North Holland, Amsterdam 1987)Google Scholar
  5. 5.
    J.R. Chelikowsky, K. Glassford, and J.C. Phillips: Phys. Rev. B 44, 1538 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Chelikowsky, and M.L. Cohen: “Ab initio Pseudopotentials for Semiconductors,” Handbook on Semiconductors, Editor: P. Landsberg (Elsevier, 1992) Vol. 1, p. 59; J.R. Chelikowsky and S.G. Louie (Eds.): Quantum Theory of Real Materials, (Kluwer Press, 1996); W.E. Pickett: Computer Physics Reports 9, 115 (1989); J.R. Chelikowsky: J. Phys. D 33, R33 (2000)Google Scholar
  7. 7.
    M.L. Cohen, M. Schlüter, J.R. Chelikowsky, and S.G. Louie: Phys. Rev. B 12, 5575 (1975) and references thereinADSCrossRefGoogle Scholar
  8. 8.
    S. Nosé: Mol. Phys. 52, 255 (1984); J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    R. Kubo: Rep. Prog. Theor. Phys. 29, 255 (1966); H. Risken, The Fokker-Planck Equation (Springer, Berlin Heidelberg New York 1984); R.L. Stratanovitch: Topics in the Theory of Random Noise (Gordon Breach, New York 1967); N.G. van Kampen: Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam 1981)ADSCrossRefGoogle Scholar
  10. 10.
    Examples of Langevin applications include: J.C. Tully, G. Gilmer, and M. Shugart: J. Chem. Phys. 71, 1630 (1979); R. Biswas and D.R. Hamann: Phys. Rev. B 34, 895 (1986); N. Binggeli and J.R. Chelikowsky: Phys. Rev. B 50, 11764 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    N. Binggeli, J.L. Martins, and J.R. Chelikowsky: Phys. Rev. Lett. 68, 2956 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    L. Verlet: Phys. Rev. 165, 201 (1967); D. Beeman: J. Comp. Phys. 20, 130 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    R. Car and M. Parrinello: Phys. Rev. Lett. 55, 2471 (1985); 60 204 (1988). A recent review of the Car-Parrinello and related methods can be found in D. Marx and J. Hutter: Ab Initio Molecular Dynamics: Theory and Implementation, in Modern Methods and Algorithms of Quantum Chemistry, Editor: J. Grotendorst (John von Neumann Institute for Computing, Forschungszentrum Jülich 2000) pp. 301-449ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Wentzcovitch and J.L. Martins: Solid State Comm. 78, 831 (1991); N. Binggeli, J.L. Martins, and J.R. Chelikowsky: Phys. Rev. Lett. 68, 2956 (1992); J.R. Chelikowsky and N. Binggeli: Solid State Comm. 88, 381 (1993); Phys. Rev. B 49, 114 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Hamann, M. Schlüter, and C. Chiang: Phys. Rev. Lett. 43, 1494 (1979); G. Kerker: J. Phys. C 13, L189, (1980); D. Vanderbilt: Phys. Rev. B 32, 8412, (1985); A. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopoulos: Phys. Rev. B 43, 1227 (1990); M.L. Cohen and J.R. Chelikowsky: Electronic Structure and Optical Properties of Semiconductors, Springer Solid-State Science Vol. 75, (Springer, Berlin Heidelberg New York 1988)ADSCrossRefGoogle Scholar
  16. 16.
    S. Louie, S. Proyen, and M. Cohen: Phys. Rev. B 26, 1738 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    N. Troullier and J.L. Martins: Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Saad, A. Stathopoulos, J.R. Chelikowsky, K. Wu, and S. Öğüt: BIT 36, 563 (1996); A. Stathopoulos, S. Öğüt, Y. Saad, J.R. Chelikowsky and H. Kim: Computing in Science and Engineering 2, 19 (2000); S.G. Louie, in Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter, (Plenum, New York 1985) p. 335MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    C.T. Chan, K.P. Bohnen, and K.M. Ho: Phys. Rev. B47, 4771 (1993)ADSGoogle Scholar
  20. 20.
    J.Q. Broughton and X.P. Li: Phys. Rev. B 35, 9120 (1987); F.H. Stillinger and T.A. Weber: Phys. Rev. B 31, 5262 (1985); M.D. Kluge, J.D. Ray, and A. Rahman: Phys. Rev. B 36, 4234 (1987); D. Leudtke and U. Landman: Phys. Rev. B 40, 1164 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    J. Emsley: The Elements, 3rd edn. (Oxford University Press, Oxford 1996)Google Scholar
  22. 22.
    R. Kubo: J. Phys. Soc. Jpn. 12, 570 (1957); D. Greenwood: Proc. Phys. Soc. 71, 585 (1958)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    M.S. Hybertsen and S.G. Louie: Phys. Rev. B 34, 5390 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    R. Virkkunen, K. Laasonen, and R. Nieminen: J. Phys. Condes. Matter 3, 7455 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Waseda: The Structure of Non-crystalline Materials (McGraw Hill, New York 1980)Google Scholar
  26. 26.
    C. Bergman, C. Bichara, P. Chieux and J. Gaspard: J. Physique Col. C8-46, 97 (1985)Google Scholar
  27. 27.
    J. Gaspard, J. Raty, R. Ceolin, and R. Bellissent: J. Non-Cryst. Solids 205–207, 75 (1996)CrossRefGoogle Scholar
  28. 28.
    I. Stich, R. Car and M. Parrinello: Phys. Rev. B 44, 4262 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    K.M. Shvarev, B.A. Baum, and P.V. Geld: Sov. Phys. Solid State 16, 2111 (1975)Google Scholar
  30. 30.
    K. Hellwege (Ed.): Landölt-Bornstein New Series (Springer, Berlin Heidelberg New York 1984)Google Scholar
  31. 31.
    C. Molteni, L. Colombo, and L. Miglio: J. Phys. Cond. Matter 2, 279 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. R. Chelikowsky
    • 1
  • M. Jain
    • 1
  • J. J. Derby
    • 1
  1. 1.Department of Chemical Engineering and Materials Science, Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations