Advertisement

A Microscopic Approach to the Mott—Hubbard Gap

  • C.-H. Pao
  • N. E. Bickers
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 90)

Abstract

We have studied the doped Mott insulator phase of the two-dimension Hubbard model from the intermediate to large interaction regimes. By introducing a rotationally invariant Stratonovich—Hubbard field we decouple the static spin components of the interaction. The static charge interaction is then treated by Hartree-Fock approximation in the presence of a random spin field. We sample random spin configurations by Monte Carlo simulation with the Metropolis updating algorithm. The Mott-Hubbard gap and static susceptibilities are studied at and away from half-filling at low temperature

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zaanen and O. Gunnarsson: Phys. Rev. B 40, 7391 (1989); D. Poilblanc and T.M. Rice: Phys. Rev. B 39, 9749 (1989); H.J. Schulz: J. Physique 50, 2833 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    N.E. Bickers and D.J. Scalapino: Ann. Phys. (N.Y.) 193, 206 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    N.E. Bickers, D.J. Scalapino and S.R. White: Phys. Rev. Lett. 62, 961 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    N.E. Bickers and S.R. White: Phys. Rev. B 43, 8044 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    S. Moukouri et al.: Phys. Rev. B 61, 7887 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kampf and J.R. Schrieffer: Phys. Rev. B 42, 7967 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Y.M. Vilk and A.-M.S. Tremblay: J. Phys. 17, 1309 (1997)Google Scholar
  8. 8.
    A.V. Chubukov and J. Schmalian: Phys. Rev. B 57, R11085 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    N.E. Bickers submitted to Phys. Rev. B (2000)Google Scholar
  10. 10.
    R.L. Stratonovich: Dokl. Akad. Nauk SSSR 115, 1097 (1957) [Soviet Phys. Doklady 2, 416 (1958)]MathSciNetGoogle Scholar
  11. 11.
    N.E. Bickers and D.J. Scalapino: cond-mat/0010480 (2000)Google Scholar
  12. 12.
    For a more detail description, see [11]Google Scholar
  13. 13.
    E. Dagotto et al.: Phys. Rev. Lett. 67, 1918 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    E. Dagotto, F. Ortolani, and D.J. Scalapino: Phys. Rev. B 46, 3183 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    N. Bulut, D.J. Scalapino, and S.R. White: Phys. Rev. B 47, 6157 (1993); ibid. 50, 9623 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    For a survey of Lanczos and quantum Monte Carlo results for the Hubbard model, see E. Dagotto: Rev. Mod. Phys. 66, 763 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • C.-H. Pao
    • 1
  • N. E. Bickers
    • 2
  1. 1.Department of PhysicsNat’l Chung Cheng UniversityChiayiROC
  2. 2.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations