From Frustrated Ising Models to Quantum Computing

  • M. Troyer
  • L. B. Ioffe
  • M. V. Feigel’man
  • A. Ioselevich
  • D. Ivanov
  • G. Blatter
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 90)


As simulation techniques are maturing, new connection between previously separate fields appear. We present numerical simulations on the quantum dimer model. They show that this model, originally derived as effective model for the low-energy physics of frustrated Ising models, has the right properties to be used in a physical realization of topologically protected quantum bits. A topologically protected quantum bit has the advantage of being passively stable against decoherence and thus does not require error correction schemes


Edge State Triangular Lattice Dime Model Exact Diagonalization Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Yu. Kitaev: Fault-tolerant quantum computation by anyons. Report quant-ph/9707021Google Scholar
  2. 2.
    L. Ioffe, M.V. Feigel'man, A. Ioselevich, D. Ivanov, M. Troyer and G. Blatter: Nature 415, 507 (2002)CrossRefGoogle Scholar
  3. 3.
    J.I. Cirac and P. Zoller: Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    C. Monroe, D. Meekhof, B. King, W. Itano and D. Wineland: Phys. Rev. Lett. 75, 4714 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Q. Turchette, C. Hood, W. Lange, H. Mabushi, and H.J. Kimble: Phys. Rev. Lett. 75, 4710 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    D. Loss and D.P. DiVincenzo: Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    A. Shnirman, G. Schön, and Z. Hermon: Phys. Rev. Lett. 79, 2371 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Averin: Solid State Commun. 105, 659 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Mooij, T.P. Orlando, L.S. Levitov, L. Tian, C.H. van der Wal, C.H. and S. Lloyd: Science 235, 1036 (1999)CrossRefGoogle Scholar
  10. 10.
    L. Ioffe, V.B. Geshkenbein, M.V. Feigel’man, A.L. Fauchère and G. Blatter: Nature 398, 678 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Nakamura, Yu.A. Pashkin and J.S. Tsai: Nature 398, 786–788 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo and J.E. Lukens: Nature 406, 43 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, and J.E. Mooij: Science 290, 773 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    J. Preskill: Fault-tolerant quantum computation.Google Scholar
  15. 15.
    Z. Bai, J. Demmel and J. Dongarra (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, 2000)Google Scholar
  16. 16.
    G.W. Stewart: Matrix Algorithms (SIAM, 2001)Google Scholar
  17. 17.
    R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, 1993)Google Scholar
  18. 18.
    J.G. Siek, A. Lumsdaine and L.-Q. Lee, in Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and Engineering Computing (OO’98) (SIAM, 1998); the library is availavle on the web at:
  19. 19.
  20. 20.
    J.K. Cullum and R.A. Willoughby: J. Comput. Phys. 44, 329–358 (1981); J.K. Cullum and R.A. Willoughby: Lanczos algorithms for Large Symmetric Eigenvalue Computations. Vols. 1 and 2, Theory. (Birkhauser, Boston 1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    J.G. Siek and A. Lumsdaine, in Modern Software Tools for Scientific Computing (Birkhäuser, Boston 1999); the library is availavle on the web at: Google Scholar
  22. 22.
    T. Veldhuizen, in Led. Notes in Computer Science 1505 223 (1998); the library is available on the web at CrossRefGoogle Scholar
  23. 23.
    M. Troyer, Ph.D. thesis (ETH Zürich, 1994)Google Scholar
  24. 24.
    T. Veldhuizen, C++ Report 7, 26 (1995); A.D. Robinson: Computers in Physics 10, 458 (1996)Google Scholar
  25. 25.
    M. Troyer: Lect. Notes in Computer Science 1732, 164 (1999)CrossRefGoogle Scholar
  26. 26.
    See the documentation at
  27. 27.
  28. 28.
    L.Q. Lee, A. Lumsdaine and J.G. Siek: The Boost Graph Library (Addison Wesley, 2001)Google Scholar
  29. 29.
    R. Moessner, and S.L. Sondhi: Phys. Rev. Lett. 86, 1881 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    R. Moessner, and S.L. Sondhi: Phys. Rev. B 63, 224401 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Kivelson, D.S. Rokhsar, and J.P. Sethna: Phys. Rev. B 35, 8865 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Rokhsar, and S.A. Kivelson: Phys. Rev. Lett. 61, 2376 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    X.G. Wen: Phys. Rev. B 44, 2664 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    E. Fradkin: Field Theories of Condensed Matter Systems. (Addison Wesley, Redwood City, CA 1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Troyer
    • 1
  • L. B. Ioffe
    • 2
    • 3
  • M. V. Feigel’man
    • 3
  • A. Ioselevich
    • 3
  • D. Ivanov
    • 1
  • G. Blatter
    • 1
  1. 1.Theoretische PhysikETH-HönggerbergZürichSwitzerland
  2. 2.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations