Skip to main content

Inverse Scattering Theory for Time-Harmonic Waves

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Abstract

First, we will briefly recall the physical models for the (linearised) acoustic and electromagnetic wave propagation and how they reduce to boundary value problems for the Helmholtz equation. For more details we refer to, e.g. [17, 18, 25, 50].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.S. Angell, X. Jiang and R.E. Kleinman: On a numerical method for inverse acoustic scattering. Inverse Problems 13 (1997), 531–545.

    Article  MathSciNet  MATH  Google Scholar 

  2. T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach: A constructive method for identification of an impenetrable scatterer. Wave Motion 11 (1989), 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  3. T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach: Target reconstruction from scattered far field data. Ann, des Télécommunications 44 (1989), 456–463.

    Google Scholar 

  4. T.S. Angell, R.E. Kleinman and G.F. Roach; An inverse transmission problem for the Helmholtz equation. Inverse Problems 3 (1987), 149–180.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.B. Bakushinskii: The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Meth. Math. Phys. 32 (1992), 1353–1359.

    MathSciNet  Google Scholar 

  6. H. Brakhage and P. Werner; Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16 (1965), 325–329.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Brühl: Gebieterkennung in der elektrischen Impedanztomographie. Dissertation thesis, University of Karisruhe, 1999.

    Google Scholar 

  8. M. Brühl: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32 (2001). 1327–1341.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Brühl and M. Hanke: Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems 16 (2000), 1029–1042.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Bryan and L.F. Caudill: An inverse problem in thermal imaging. SIAM J. Appl. Math. 56 (1996), 715–735.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Cakoni and D. Colton: On the mathematical basis of the Linear Sampling Method. Preprint 2002.

    Google Scholar 

  12. F. Cakoni, D. Colton and H. Haddar: The linear sampling method for anisotropic media. J. Comp. Appl. Math. 146 (2002), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Cakoni, D. Colton and P. Monk: The direct and inverse scattering problems for partially coated obstacles. Inverse Problems 17 (2001), 1997–2015.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Cakoni and H. Haddar: The linear sampling method for anisotropic media: Part II. Preprint, 2002.

    Google Scholar 

  15. D. Colton, K. Giebermann and P. Monk: A regularized sampling method for solving three-dimensional inverse scattering problems. SIAM J. Sci. Comput. 21 (2000), 2316–2330.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Colton and A. Kirsch: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12 (1996), 383–393.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Colton and R. Kress: Integral equations in scattering theory. Wiley-Interscience Publications 1983.

    Google Scholar 

  18. D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering problems. 2nd edition. Springer-Verlag, New-York, 1998.

    Google Scholar 

  19. D. Colton and P. Monk: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45 (1985), 1039–1053.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Colton and P. Monk: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46 (1986), 506–523.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Colton and P. Monk: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat, Comp. 8 (1987), 278–291.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Colton and P. Monk: A linear sampling method for the detection of leukemia using microwaves. SIAM J. Appl. Math. 58 (1998), 926–941.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Colton and P. Monk: A linear sampling method for the detection of leukemia using microwaves II. SIAM J. Appl. Math. 60 (2000), 241–255.

    Article  MathSciNet  Google Scholar 

  24. D. Colton, M. Piana and R. Potthast: A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Problems 13 (1997), 1477–1493.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Dassios and R. Kleinman: Low frequency scattering. Oxford Science Publications, 2000.

    Google Scholar 

  26. M.C. Delfour and J.-P. Zolésio: Shapes and geometries. Analysis, differential calculus, and optimization. SIAM, Philadelphia, 2001.

    MATH  Google Scholar 

  27. P. Deuflhard, H. Engl and O. Scherzer: A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Problems 14 (1998), 1081–1106.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Engl, M. Hanke and A. Neubauer: Regularization of inverse problems. Kluwer Academic Publishers, Dordrecht, 1996.

    Book  MATH  Google Scholar 

  29. T. Gerlach and R. Kress: Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12 (1996), 619–625.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Gilbarg and N.S. Trudinger: Elliptic partial differential equations. 2nd edition, Springer-Verlag, New-York, 1983.

    Book  MATH  Google Scholar 

  31. N. Grinberg: On the Inverse obstacle scattering problem with robin or mixed boundary condition: Application of the modified Kirsch factorization method. University of Karlsruhe, Department of Mathematics, Preprint 02/4.

    Google Scholar 

  32. N. Grinberg and A. Kirsch: The linear sampling method in inverse obstacle scattering for impedance boundary conditions. Journal of Inverse and Ill-Posed Problems, to appear.

    Google Scholar 

  33. M. Hanke: A regularized Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Problems 13 (1997), 79–95.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Hanke: Regularizing properties of a truncated Newton-cg algorithm for nonlinear inverse problems. Numer. Funct. Anal. Opt. 18 (1998), 971–993.

    Article  MathSciNet  Google Scholar 

  35. M. Hanke, F. Hettlich and O. Scherzer: The Landweber iteration for an inverse scattering problem. In: Proc. of the 1995 design engineering technical conferencees. Vol 3 Part C, K.-W. Wang et al. (eds.), The American Society of Mechanical Engineers, New York, 1995, 909–915.

    Google Scholar 

  36. M. Hanke, A. Neubauer and O. Scherzer: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72 (1995), 21–37.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Hettlich: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10 (1994), 129–144.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Hettlich: Fréchet derivatives in inverse obstacle scattering. Inverse Problems 11 (1995), 371–382.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Hettlich and W. Rundell: A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37 (2000), 587–620.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Hohage: Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13 (1997), 1279–1299.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Hohage: Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optim. 21 (2000), 439–464.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Ikehata: Reconstruction of an obstacle from the scattering amplitude at fixed frequency. Inverse Problems 14 (1998), 949–954.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Isakov: On the uniqueness in the inverse transmission scattering problem. Comm. Part. Diff. Equa. 15 (1990), 1565–1587.

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Isakov: Inverse problems for partial differential equations. Springer Verlag, New-York, 1998.

    MATH  Google Scholar 

  45. D.S. Jones: Integral equations for the exterior acoustic problem. Q. J. Mech. Appl. Math. 27 (1974), 129–142.

    Article  MATH  Google Scholar 

  46. D.S. Jones and X.Q. Mao: The inverse problem in hard acoustic scattering. Inverse Problems 5 (1989), 731–748.

    Article  MathSciNet  MATH  Google Scholar 

  47. D.S. Jones and X.Q. Mao: A method for solving the inverse problem in soft acoustic scattering. IMA J. Appl. Math. 44 (1990), 127–143.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Kirsch: The domain derivative and two apphcations in inverse scattering theory. Inverse Problems 9 (1993), 81–96.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Kirsch: Introduction to the mathematical theory of inverse problems. Springer-Verlag, New-York, 1996.

    Book  MATH  Google Scholar 

  50. A. Kirsch: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14 (1998), 1489–1512.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Kirsch: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Problems 15 (1999), 413–429.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Kirsch: New characterizations of solutions in inverse scattering theory. Applicable Analysis 76 (2000), 319–350.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Kirsch: The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Problems 18 (2002), 1025–1040.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Kirsch and R. Kress: A numerical method for an inverse scattering problem. In Inverse Problems (H. Engl and C. Groetsch, eds.) Academic Press, Orlando (1987), 279–290.

    Google Scholar 

  55. A. Kirsch and R. Kress: Uniqueness in inverse obstacle scattering. Inverse Problems 9 (1993), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Kirsch, R. Kress, P. Monk and A. Zinn: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4 (1988), 749–770.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Kirsch and L. Päivärinta: On recovering obstacles inside inhomogeneities. Math. Meth. Appl. Sci. 21 (1998), 619–651.

    Article  MATH  Google Scholar 

  58. A. Kirsch and S. Ritter: A hnear sampling method for inverse scattering from an open arc. Inverse Problems 16 (2000), 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  59. R.E. Kleinman and G.F. Roach: On modified Green’s functions in exterior problems for the Helmholtz equation. Proc. Royal Soc. London A383 (1982), 313–332.

    Article  MathSciNet  MATH  Google Scholar 

  60. P.D. Lax and R.S. Phillips: Scattering theory. Academic Press, New York, 1967.

    MATH  Google Scholar 

  61. R. Leis: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung. Math. Z. 90 (1965), 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Leis: Initial boundary value problems in mathematical physics, Teubner, 1986.

    Google Scholar 

  63. C. Miranda: Partial differential equations of elliptic type. Springer Verlag, 1970.

    Google Scholar 

  64. J.-C. Nédélec: Acoustic and electromagnetic equations. Springer Verlag, 2001.

    Google Scholar 

  65. O.I. Panich: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Usp. Mat. Nauk 20A (1965), 221–226 (in Russian).

    Google Scholar 

  66. O. Pironneau: Optimal shape design for elliptic systems. Springer Verlag, Berlin, Heidelberg, New York, 1984.

    Book  MATH  Google Scholar 

  67. R. Potthast: Fréchet differentiability of boundary integral operators. Inverse Problems 10 (1994), 431–447.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Potthast: Domain derivatives in electromagnetic scattering. Math. Meth, Appl. Sci. 19 (1996), 1157–1175.

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Potthast: A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math. 61 (1998), 119–140.

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Potthast: On the convergence of Newton’s method in inverse scattering. Inverse Problems 17 (2001), 1419–1434.

    Article  MathSciNet  MATH  Google Scholar 

  71. F. Rellich: Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendhchen Gebieten. Jber. Deutsch. Math. Verein. 53 (1943), 57–65.

    MathSciNet  MATH  Google Scholar 

  72. B.P. Rynne and B.D. Sieeman: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math, Anal. 22 (1991), 1755–1762.

    Article  MathSciNet  MATH  Google Scholar 

  73. A.N. Tikhonov, A.V. Goncharrsky, V.V. Stepanov and A.G. Yagola: Numerical methods for the solution of ill-posed problems. Kluwer Academic Publishers. Dordrecht, 1990.

    MATH  Google Scholar 

  74. F. Ursell: On the exterior problems of acoustics. Math. Proc. Cambridge Philos. Soc. 74 (1973), 117–125.

    Article  MathSciNet  MATH  Google Scholar 

  75. F. Ursell: On the exterior problems of acoustics II. Math. Proc. Cambridge Philos. Soc. 84 (1978), 545–548.

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Zinn: On an optimisation method for the full-and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5 (1989), 239–253.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirsch, A. (2003). Inverse Scattering Theory for Time-Harmonic Waves. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics