Variational Methods for Time-Dependent Wave Propagation Problems

  • Patrick Joly
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 31)


There is an important need for numerical methods for time dependent wave propagation problems and their many applications, for example in acoustics, electromagnetics and geophysics. Although very old, finite difference time domain methods (FDTD methods in the electromagnetics literature) remain very popular and are widely used in wave propagation simulations, and more generally for the resolution of linear hyperbolic systems, among which Maxwell's system is a typical example. These methods allow us to get discrete equations whose unknowns are generally field values at the points of a regular mesh with spatial step h and time step Δt.


Mixed Finite Element Finite Element Space Order Problem Mixed Finite Element Method Fictitious Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.N. Arnold, F. Brezzi and J. Douglas. PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math., 1:347–367, 1984.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    G.P. Astrakmantev. Methods of fictitious domains for a second order elliptic equation with natural boundary conditions. U.S.S.R Comp. Math. and Math. Phys., 18:114–221, 1978.CrossRefGoogle Scholar
  3. 3.
    C. Atamian, R. Glowinski, J. Périaux, H. Stève and G. Terrason. Control approach to fictitious domain in electro-magnetism. Conférence sur l'approximation et les methodes numeriques pour la resolution des equations de Maxwell, Hotel Pullmann, Paris, 1989.Google Scholar
  4. 4.
    C. Atamian and P. Joly. An analysis of the method of fictitious domains for the exterior Helmholtz problem. RAIRO Modèl. Math. Anal. Numér, 27(3):251–288, 1993.MathSciNetMATHGoogle Scholar
  5. 5.
    I. Babúska. The Finite Element Method with Lagrangian Multipliers. Numer. Math., 20:179–192, 1973.CrossRefMATHGoogle Scholar
  6. 6.
    G.A. Baker and V.A. Dougalis. The Effect of Quadrature Errors on Finite Element Approximations for the Second-Order Hyperbolic Equations. SIAM. Journ. Numer. Anal., 13(4):577–598, 1976.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. Bamberger, R. Glowinski and Q. H. Tran. A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. on Num. Anal., 34(2):603–639, April 1997MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    E. Bécache, P. Joly and G. Scarella. A fictitious domain method for unilateral contact problems in non destructive testing. In Computational and Fluid ans Solid Mechanics, pp. 65–67, 2001.Google Scholar
  9. 9.
    E. Bécache, P. Joly and C. Tsogka. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal., 37(4):1053–1084, 2000.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    E. Bécache, P. Joly and C. Tsogka. Fictitious domains, mixed FE and PME for 2-D elastodynamics. Journal of Computational Acoustics, 9(3):1175–1201, 2001.Google Scholar
  11. 11.
    E. Bécache, P. Joly and C. Tsogka. A new family of mixed finite elements for the linear elastodynamic problem. SIAM J Numer. Anal., 39(6):2109–2132, 2002.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    F. Ben Belgacem. The mortar finite element method with Lagrange multipliers. Numer. Math., 84(2):173–197, 1999.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    F. Ben Beigacem, A. Buffa and Y. Maday. The mortar finite element method for 3d maxwell equations: First results. SIAM J. Numer. Anal., 39(3):880–901, 2001.MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Bendali. Approximation par éléments finis de surface de problèmes de diffraction des ondes électromagnétiques. PhD thesis. Université Paris VI, 1984.Google Scholar
  15. 15.
    C. Bernardi and Y. Maday. Raffinement de maillage en éléments finis par la méthode des joints. C. R. Acad Sei. Paris Sér. I Math., 320(3):373–377, 1995.MathSciNetMATHGoogle Scholar
  16. 16.
    F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (15). Springer Verlag, 1991.Google Scholar
  17. 17.
    A. Buffa and P. Ciarlet Jr. On traces for functional spaces related to Maxwell’s equations. I. an integration by parts formula in Lipschitz polyhedra. Mathematical Methods in the Applied Sciences, 24(l):9–30, 2001.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. Chaigne, P. Joly and L. Rhaouti. Time-domain modeling and numerical simulation of a kettledrum. Journal of the Acoustical Society of America, 6:3545–3562, 1999.Google Scholar
  19. 19.
    M.W. Chevalier and R.J. Luebbers. FDTD local grid with material traverse. IEEE Transactions on Antennas and Propagation, 45(3):411–421, March 1997.CrossRefGoogle Scholar
  20. 20.
    M.J.S. Chin-Joe-Kong, W.A. Mulder and M. Van Veldhuizen. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. J. Engrg. Math., 35(4):405–426, 1999.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    P.G. Ciarlet. The finite element method for elliptic problems. Reprinted by SIAM in 2002, original by North-Holland, 1982.Google Scholar
  22. 22.
    M. Clemens, P. Thoma, T. Weiland and U. van Rienen. Computational electromagnetic-field calculation with the finite-integration method. Surveys Math. Indust., 8(3–4):213–232, 1999.Google Scholar
  23. 23.
    P. Clément. Approximation by finite element functions using local regularization. Rev. Fran. Automat. Informat. Rech. Opér. Sér. Rouge Anal. Numér., 9:77–84, 1975.MATHGoogle Scholar
  24. 24.
    G. Cohen. Higher-order numerical methods for transient wave equations. Scientific Computation, 2002.Google Scholar
  25. 25.
    G. Cohen, P. Joly and N. Torjman. Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elements in Analysis and Design, 16:329–336, 1994.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    G. Cohen, P. Joly, N. Torjman and J. Roberts. Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer Anal., 38(6):2047–2078, 2001.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    G. Cohen and P. Monk. Gauss point mass lumping schemes for Maxwell’s equations. Numer. Methods Partial Differential Equations, 14(1):63–88, 1998.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G. Cohen and P. Monk. Mur-Nédélec finite element schemes for Maxwell’s equations. Comput. Methods Appl. Mech. Engrg., 169(3–4):197–217, 1999.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    F. Coilino, P. Joly and T. Fouquet. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction. Num. Math., To appear.Google Scholar
  30. 30.
    F. Collino, P. Joly and T. Fouquet. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis. Num. Math., To appear.Google Scholar
  31. 31.
    F. Collino, P. Joly and S. Garcès. A fictitious domain method for conformai modeling of the perfect electric conductors in the FDTD method. IEEE Trans. on Antennas and Propagation, 46:1519–1527, 1997.CrossRefGoogle Scholar
  32. 32.
    F. Collino, P. Joly and F. Millot. Fictitious domain method for unsteady problems: Application to electromagnetic scattering. Journal of Comp. Physics, 138:907–938, 1997.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    G. Derveaux. Modélisation Numérique de la Guitare Acoustique. PhD thesis. Ecole Polytechnique, 2002.Google Scholar
  34. 34.
    T. Dupont. L 2 estimates or Galerkin methods for second-order hyperbolic equations. SIAM J Numer. Anal., 10:880–889, 1973.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    A. Elmkiès. Eléments finis et condensation de masse pour les équations de Maxwell. PhD thesis. Université Paris XI, Orsay, June 1998.Google Scholar
  36. 36.
    A. Elmkiès and P. Joly. Eléments finis et condensation de masse pour les équations de Maxwell: le cas 2D. C.R. Acad. Sci. Paris, t. 324(Série I):1287–1292, 1997.Google Scholar
  37. 37.
    A. Elmkiès and P. Joly. Eléments finis et condensation de masse pour les équations de Maxwell: le cas 3D. C.R. Acad. Sci. Paris, t. 325(Série I):1217–1222, 1997.Google Scholar
  38. 38.
    B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. of Comp., 31:629–651, 1977.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    S.A Finogenov and Y.A. Kuznetsov. Two stage fictitious components methods for solving the Dirichlet boundary value problem. Sov. J. Num. Anal. Math. Modelling, 3:301–323, 1988.MathSciNetMATHGoogle Scholar
  40. 40.
    G.J. Fix. Effects of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems. In The Mathematical Fondations of the Finit Element Method with Applications to Partial Differential Equations, pp. 525–556, 1972.Google Scholar
  41. 41.
    T. Fouquet. Raffinement de maillage spatio-temporel pour les équations de Maxwell. PhD thesis, Université Paris IX Dauphine, June 2000.Google Scholar
  42. 42.
    S. Garcés. Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles Etude mathématique et numérique d'un modèle. PhD thesis, ENSAE (Toulouse), 1997.Google Scholar
  43. 43.
    T. Geveci. On the application of mixed finite element methods to the wave equations. RAIRO Modél. Math. Anal. Numér., 22(2):243–250, 1988.MathSciNetMATHGoogle Scholar
  44. 44.
    V. Girault and R. Glowinski. Error analysis of a fict. domain method applied to a Dirichlet problem. Japan J. Ind. Appl. Math., 12(3):487–514, 1995.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    R. Glowinski, T.W. Pan and J. Périaux. A fictitious domain method for Dirichlet problem and applications. Comp. Meth. in Appl. Mech. and Eng., 111:283–303, 1994.CrossRefMATHGoogle Scholar
  46. 46.
    R. Glowinski, T.W. Pan and J. Périaux. A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng., 112:133–148, 1994.CrossRefMATHGoogle Scholar
  47. 47.
    P. Havé, M. Kern and C. Lemuet. Résolution numérique de l'équation des ondes par une méthode d'éléments finis d'ordre élevé sur calculateur parallèle. Technical Report 4381, I.N.R.I.A., Février 2002.Google Scholar
  48. 48.
    P. Joly and C. Poirier. A new second order edge element on tetrahedra for time dependent maxwell’s equations. In Mathematical and Numerical Aspects of Wave Propagation, pp. 842–847, 2000.Google Scholar
  49. 49.
    P. Joly and L. Rhaouti. Domaines fictifs, éléments finis h(div) et condition de neumann: le problème de la condition inf-sup. C. R. Acad. Sci. Paris, Série I, 328:1225–1230, 1999.MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    P. Joly and J. Ródriguez. l 2 error analysis of space-time mesh refinement schemes for the 1d wave equation. in preparation.Google Scholar
  51. 51.
    I. S. Kim and W. J. R. Hoefer. A local mesh refinement algorithm for the time-domain finite-difference method to solve maxwell’s equations. IEEE Trans. Microwave Theory Tech., 38(6):812–8l5, June 1990.CrossRefGoogle Scholar
  52. 52.
    K.S. Kunz and L. Simpson. A technique for increasing the resolution of finite-difference solutions to the maxwell equations. IEEE Trans. Electromagn. Compat., EMC-23:419–422, Nov. 1981.CrossRefGoogle Scholar
  53. 53.
    J.L. Lions and E. Magenès. Problèmes aux Limites non Homogènes et Applications. Dunod, 1968.Google Scholar
  54. 54.
    Ch.G. Makridakis. On mixed finite element methods for linear elastodynamics. Numer. Math., 61(2):235–260, 1992.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    G.I. Marchuk, Y.A. Kuznetsov and A.M. Matsokin. Fictitious domain and domain decomposition methods. Sov. J. Num. Anal. Math. Modelling, 1:3–35, 1986.MathSciNetMATHGoogle Scholar
  56. 56.
    P. Monk. Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal., 29(3):714–729, 1992.MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    P. Monk. Sub-gridding FDTD schemes. ACES Journal, 11:37–46, 1996.Google Scholar
  58. 58.
    P. Monk and O. Vacus. Error estimates for a numerical scheme for ferromagnetic problems. SIAM J Numer. Anal., 36(3):696–718, 1999.MathSciNetCrossRefGoogle Scholar
  59. 59.
    J.C. Nédélec. Mixed finite elements in ℝ3. Num. Math., 35:315–341, 1980.CrossRefMATHGoogle Scholar
  60. 60.
    J.C. Nédélec. A new family of mixed finite elements in ℝ3. Num. Math., 50:57–81, 1986.CrossRefMATHGoogle Scholar
  61. 61.
    V. Petkov. Scattering theory for hyperbolic operators. Studies in Mathematics and its Applications, 1989.Google Scholar
  62. 62.
    S. Piperno, M. Remaki and L. Fezoui. A nondiffusive finite volume scheme for the three-dimensional Maxwell’s equations on unstructured meshes. SIAM J. Numer. Anal., 9(6):2089–2108, 2002.MathSciNetCrossRefGoogle Scholar
  63. 63.
    D.T. Prescott and N.V. Shuley. A method for incorporating different sized cells into the finite-difference time-domain analysis technique. IEEE Microwave Guided Wave Lett., 2:434–436, Nov. 1992.CrossRefGoogle Scholar
  64. 64.
    P.A. Raviart. The use of numerical integration in finite element methods for parabolic equations. In Topics in Numerical Analysis Proc., pp. 233–264, 1973.Google Scholar
  65. 65.
    A. Taflove. Computational Electrodynamics, The Finite-Difference Time Domain method. Artech House, London, 1995.MATHGoogle Scholar
  66. 66.
    A. Ben Haj Yedder, E. Bécache, P. Joly and A. Komech. A fictitious domain approach to the scattering of waves by mobile obstacles. in preparation.Google Scholar
  67. 67.
    K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. on Antennas and propagation, pp. 302–307, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Patrick Joly
    • 1
  1. 1.INRIA RocquencourtBP105Le ChesnayFrance

Personalised recommendations