Skip to main content

Herglotz Wave Functions in Inverse Electromagnetic Scattering Theory

  • Chapter
Topics in Computational Wave Propagation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Abstract

Ever since the invention of radar during the Second World War, scientists and engineers have strived not only to detect but also to identify unknown objects through the use of electromagnetic waves. Indeed, as pointed out in [19], “Target identification is the great unsolved problem. We detect almost everything; we identify nothing”. A significant step forward in the resolution of this problem occurred in the 1960's with the invention of synthetic aperture radar (SAR) and since that time numerous striking successes have been recorded in imaging by electromagnetic waves using SAR [1], [7]. However, as the demands of randar imaging have increased, the limitations of SAR have become increasingly apparent. These limitations arise from the fact that SAR is based on the “weak scattering” approximation and ignores polarisation effects. Indeed, such incorrect model assumptions have caused some scientists to ask “how (and if) he complications associated with radar based automatic target recognition can be surmounted” ([1], p. 5).

This research was supported in part by a grant from the Air Force Office of Scientific

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Research.

  1. B. Borden, Radar Imaging of Airborne Targets, IOP Publishing, Bristol, 1999.

    Book  Google Scholar 

  2. F. Cakoni and D. Colton, Combined far field operators in electromagnetic inverse scattering theory. Math. Methods Applied Science, to appear.

    Google Scholar 

  3. F. Cakoni and D. Colton, A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media, Proc. Edin. Math. Soc, to appear.

    Google Scholar 

  4. F. Cakoni, D. Colton and P. Monk, The electromagnetic inverse scattering problem for partially coated Lipschitz domains, to appear.

    Google Scholar 

  5. O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D, PhD thesis. Université Paris IX Dauphine, 1996.

    Google Scholar 

  6. O. Cessenat and B. Després, Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), 255–299.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review 43 (2001), 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Colton, J. Coyle, and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Review, 42 (2000), 369–414.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Colton, H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 12 (2002), 719–731.

    MathSciNet  Google Scholar 

  10. D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region. Inverse Problems, 12 (1996), 383–393.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Veriag, New York, Second Edition, 1998.

    MATH  Google Scholar 

  12. D. Colton and L. Päivärinta, Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium, Malh. Proc. Comb. Phil. Soc. 103 (1988), 561–575.

    Article  MATH  Google Scholar 

  13. D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal. 119 (1992), 59–70

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Colton, M. Piana and R. Potthast, A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Problems, 13 (1997), 1477–1493.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Dorn, H. Bertete-Aguirre, J.G. Berryman and G. C. Papanicolaou, A nonlinear inversion method for 3D-electromagnetic imaging using adjoint fields. Inverse Problems 15 (1999), 1523–1558.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Haas, W. Rieger, W. Rucker and G. Lehner, Inverse 3D acoustic and electromagnetic obstacle scattering by iterative adaption, in Inverse Problems of Wave Propagation and Diffraction, G. Chavent and P. Sabatier, eds., Springer-Vertag, Heidelberg, 1997, 204–215.

    Chapter  Google Scholar 

  17. H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems 18 (2002), 891–906.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Hähner, Electromagnetic wave scattering: theory, in Scattering, R. Pike and P. Sabatier, eds., Academic Press, London, 2002, 211–229.

    Chapter  Google Scholar 

  19. A. E. Hooper and H. N. Hambric, Unexploded ordinance (UXO)): The problem, in Detection and Identification of Visually Obscured Targets, C. E. Baum, ed., Taylor and Francis, Philadelphia, 1999 1–8.

    Google Scholar 

  20. T. Huttunen, P Monk and J.P. Kaipio, Computational Aspects of the Ultra Weak Variational Formulation, J. Comput. Phys, 182 (2002), 27–46.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Kress, Electromagnetic wave scattering: theory, in Scattering, R. Pike and P. Sabatier, eds., Academic Press, London, 2002, 191–210.

    Chapter  Google Scholar 

  23. P. Maponi, M. Recchioni and F. Zirilli, The use of optimization in the reconstruction of obstacles from acoustic or electromagnetic scattering data, in Large Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design, L. Biegler, et. al. eds., IMA Volumes in Mathematics and Its Applications, Vol. 92, Springer, New York, 1997, 81–100.

    Chapter  Google Scholar 

  24. P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, 2002.

    Google Scholar 

  25. J. C. Nédélec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  26. P. Ola, L. Päivärinta, and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. Jour. 70 (1993) 617–653.

    Article  MATH  Google Scholar 

  27. P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J Appl. Math. 56 (1996), 1129–1145.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory, Research Notes in Mathematics, Vol. 427, Chapman and Hall/CRC, Boca Raton, Florida, 2001.

    Book  MATH  Google Scholar 

  29. Z. Sun and G. Uhlmann, An inverse boundary value problem for Maxwell’s equations. Arch. Rat. Mech. Anal. 119 (1992), 71–93.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Womersley and I. Sloan, How good can polynomial interpolation on the sphere be?, Advances in Computational Mathematics, 14 (2001), 195–226.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colton, D., Monk, P. (2003). Herglotz Wave Functions in Inverse Electromagnetic Scattering Theory. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics