Skip to main content

Impact Decompression Melting: A Possible Trigger for Impact Induced Volcanism and Mantle Hotspots ?

  • Chapter
Impact Markers in the Stratigraphic Record

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

We examine the potential for decompression melting beneath a large terrestrial impact crater, as a mechanism for generating sufficent quantity of melt to auto-obliterate the crater. Decompression melting of the sub-crater mantle may initiate almost instantaneously, but the effects of such a massive melting event may trigger long-lived mantle up-welling or an impact plume (I-plume) that could potentially resemble a mantle hotspot. The energy released is largely derived from gravitational energy and is outside (but additive to) the conventional calculations of impact modelling, where energy is derived solely from the kinetic energy of the impacting projectile, be it comet or asteroid; therefore the empirical correlation between total melt volume and crater size will no longer apply, but instead be nonlinear above some threshold size, depending strongly on the thermal structure of the lithosphere. We use indicative hydrocode simulations (AUTODYNE-2D) to identify regions of decompression beneath a dynamic large impact crater, (calculated as P-Lithostatic P) using SPH and Lagrangian solvers. The volume of melting due to decompression is then estimated from comparison with experimental phase relations for the upper mantle and depends on the geotherm. We suggest that the volume of melt produced by a 20 km iron projectile travelling at 10 km/s into hot oceanic lithosphere may be comparable to a Large Igneous Province (LIP ~106 km3). The mantle melts will have plume-like geochemical signatures, and rapid mixing of melts from sub-horizontal sub-crater reservoirs to depths where garnet and/or diamond is stable is possible. Direct coupling between impacts and volcanism is therefore a possibility that should be considered with respect to global stratigraphic events in the geological record. Maximum melting would be produced in young oceanic lithosphere and could produce oceanic plateaus, such as the Ontong Java plateau at ~120 Ma. The end-Permian Siberian Traps, are also proposed to be the result of volcanism triggered by a major impact at ~250 Ma, onto continental or oceanic crust. Auto-obliteration by volcanism of all craters larger than ~200 km would explain their anomalous absence on Earth compared with other terrestrial planets in the solar system. This model provides a potential explanation for the formation of komatiites and other high degree partial melts. Impact reprocessing of parts of the upper mantle via impact plumes is consistent with models of planetary accretion after the late heavy bombardment and provides an alternative explanation for most primitive geochemical signatures currently attributed to plumes as originating from the deep mantle or outer core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial causes for the Cretaceous-Tertiary extinction. Science 208: 718–720

    Article  Google Scholar 

  • Anderson D L (1998) The EDGES of the mantle. In: The Core-Mantle Boundary Region. American Geophysical Union, Washington, Geodynamics 28: 255–271

    Chapter  Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291: 1530–1533

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Gheveriya ZG, Sundaram SM (1995) Impact did not trigger Deccan volcanism: Evidence from Anjar K/T boundary intertrappean sediments. Geophysical Research Letters 22: 433–436

    Article  Google Scholar 

  • Boslough MB, Chael EP, Trucano TG, Crawford DA, Campbell DI (1986) Axial focussing of impact energy in the Earth’s interior: a possible link to flood basalts and hotspots. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper 307: 541–556

    Google Scholar 

  • Bovenkerk HP, Bundy FP, Hall HT, Strong HM, Wentorf RH (1959) Preparation of diamond. Nature 184: 1094–1098

    Article  Google Scholar 

  • Bowring SA, Erwin DH, Jin JG, Martin MW, Davidek K, Wang W (1998) U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280: 1039–1045

    Article  Google Scholar 

  • Brett R, Higgins GT (1967) Cliftonite in meteorites: a proposed origin. Science 156: 819–820

    Article  Google Scholar 

  • Buchanan PC, Reimold WU (1998) Studies of the Rooiberg Group, Bushveld Complex, South Africa: no evidence for an impact origin. Earth and Planetary Science Letters 155: 149–165

    Article  Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters 99: 79–83

    Article  Google Scholar 

  • Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science 258: 1760–1763

    Article  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412: 708–712

    Article  Google Scholar 

  • Capdevilla R, Arndt N, Letendre J, Sauvage J-F (1999) Diamonds in volcaniclastic komatiite from French Guiana. Nature 399: 456–458

    Article  Google Scholar 

  • Cintala MJ, Grieve RAF (1994) The effects of differential scaling of impact melt and crater dimensions on lunar and terrestrial craters: Some brief examples. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America Special Paper 293: 51–59

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Reviews of Geophysics 32: 1–36

    Article  Google Scholar 

  • Courtillot V (1992) Mass extinctions in the last 300 million years: one impact and seven flood basalts? Israel Journal of Earth Sciences 43: 255–266

    Google Scholar 

  • Czamanske GK, Gurevitch AB, Fedorenko V, Simonov O (1998) Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geological Review 40: 95–115

    Article  Google Scholar 

  • Dann JC (2000) The 3.5 Ga Komati Formation, Barberton greenstone belt, South Africa, part I: new maps and magmatic architecture. South African Journal of Geology 103: 47–68

    Article  Google Scholar 

  • Echeverria LM (1980) Tertiary or Mesozoic komatiites from Gorgona island, Columbia: field relations and geochemistry. Contributions to Mineralogy and Petrology 73: 253–266

    Article  Google Scholar 

  • Echeverria LM, Aitken BG (1986) Pyroclastic rocks; another manifestation of ultramafic volcanism on Gorgona Island, Columbia. Contributions to Mineralogy and Petrology 92: 428–436

    Article  Google Scholar 

  • Elkins-Tanton LT, Hager BH (2000) Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophysical Research Letters 27: 3937–3940

    Article  Google Scholar 

  • Elkins-Tanton LT, Hager BH, Grove TL (2002) Magmatic effects of the lunar late heavy bombardment [abs.] Lunar and Planetary Science 32, abs. #1422, CD-ROM

    Google Scholar 

  • Elston WE (1992) Does the Bushveld-Vredefort system (South Africa) record the largest known terrestrial impact catastrophe? [abs.] In: Abstracts submitted to the International Conference on Large Meteorite Impacts and Planetary Evolution, Lunar and Planetary Institute Contribution 790: 23–24

    Google Scholar 

  • Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the Permian-Triassic boundary? Science 293: 2343a

    Article  Google Scholar 

  • Fei Y, Bertka CM (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. In Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology; Field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd. The Geochemical Society Special Publication 6: 189–207

    Google Scholar 

  • Gansser A, Dietrich VJ, Cameron WE (1979) Paleogene komatiites from Gorgona island. Nature 278: 545–546

    Article  Google Scholar 

  • Gerasimov MV, Dikov Yu P, Yakovlev OI, Wlotzka F (2001) Reduction of iron during an impact [abs.] In: Martinez-Ruiz F, Ortega-Huertas M, Palomo I (eds) Impact markers in the Stratigraphic record Abstract volume. Universidad de Granada, 31–32

    Google Scholar 

  • Gibson RL, Reimold WU (2000) Deeply exhumed impact structures: a case study of the Vredefort structure, South Africa. In: Gilmour I, Koeberl C (eds) Impacts and the early Earth. Lecture Notes in Earth Sciences vol. 91, Springer, Berlin-Heidelberg, pp 249–277

    Chapter  Google Scholar 

  • Gladczenko TP, Coffin MF, Eldholm O (1997) Crustal structure of the Ontong Java Plateau: Modelling of new gravity and existing seismic data. Journal of Geophysical Research 102: 22711–22729

    Article  Google Scholar 

  • Glikson AY (1999) Oceanic mega-impacts and crustal evolution. Geology 27: 387–390

    Article  Google Scholar 

  • Glotov AI, Polyakov GV, Hoa TT, Balykin PA, Akimtsev VA, Krivenko AP, Tolstykh ND, Phuong NT, Thanh HH, Hung TQ, Petrova TE (2001) The Ban Phuc Ni-Cu-PGE deposit related to the phanerozoic komatiite-basalt association in the Song Da rift, nortwestern Vietnam. Canadian Mineralogist 39: 573–589

    Article  Google Scholar 

  • Grady MM, Hutchinson R, McCall GJ, Rothery DA (1998) Meteorites: Flux with Time and Impact Effects. Geological Society of London Special Publication 140, 278 pp

    Article  Google Scholar 

  • Green DH (1972) Archaean greenstone belts may include terrestrial equivalents of lunar maria? Earth and Planetary Science Letters 15: 263–270

    Article  Google Scholar 

  • Hamilton W (1970) Bushveld complex — product of impacts? In: Vissler DJL, Von Gruenewaldt G (eds) Symposium on the Bushveld Igneous Complex and other layered intrusions, Geological Society of South Africa Special Paper 1: 367–379

    Google Scholar 

  • Hawkesworth CJ, Lightfoot PC, Fedorenko VA, Blake S, Naldrett AJ, Doherty W, Gorbachev NS (1995) Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34: 61–88

    Google Scholar 

  • Hayhurst CJ, Clegg RA (1997) Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. International Journal of Impact Engineering 20: 337–348

    Article  Google Scholar 

  • Hayhurst CJ, Ranson HJ, Gardner DJ, Birnbaum NK (1995) Modelling microparticle hypervelocity oblique impacts on thick targets. International Journal of Impact Engineering 15: 375–386

    Article  Google Scholar 

  • Holzheid A, Sylvester P, O’Neill HSC, Rubie DC, Palme H (2000) Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum Nature 406: 396–399

    Article  Google Scholar 

  • Ito G, Clift PD (1998) Subsidence and growth of Pacific Cretaceous plateaus. Earth and Planetary Science Letters 161: 85–100

    Article  Google Scholar 

  • Ivanov BA (1998) Large impact crater formation: Thermal softening and acoustic fluidization [abs.]. Meteoritics and Planetary Science 33: A76

    Google Scholar 

  • Ivanov BA, Deutsch A (1999) Sudbury impact event: cratering mechanics and thermal history. In: Dressler B, Grieve RAF (eds) Large Meteorite Impacts and Planetary Evolution II, Special Paper of the Geological Society of America 339: 389–397

    Google Scholar 

  • Ivanov BA, De Niem D, Neukum G (1997) Implementation of dynamic strength models into 2D hydrocodes: applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering 20: 411–430

    Article  Google Scholar 

  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289: 432–436

    Article  Google Scholar 

  • Jones AP (2002) Komatiites: new information on the type locality (Barberton), and some new ideas. Geology Today 18: 23–25

    Article  Google Scholar 

  • Jones AP, Smith JV, Dawson JB, Hansen EC (1983) Metamorphism, partial melting, and K-metasomatism of garnet-scapolite-kyanite granulite xenoliths from Lashaine, Tanzania. Journal of Geology 91: 143–165

    Article  Google Scholar 

  • Jones AP, Price GD, Claeys P (1999) A petrological model for oceanic impact melting and the origin of komatiite [abs]. In: Gersonde R, Deutsch A (eds) Oceanic impacts: mechanisms and environmental perturbations. Berichte zur Polarforschung 343, Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven, pp 41–42

    Google Scholar 

  • Jones AP, Price G D, DeCarli P, Price N, Hayhurst C (2001) Modelling impact decompression melting: a possible trigger for impact induced volcanism and mantle hotspots [abs.]. In: Martinez-Ruiz F, Ortega-Huertas M, Palomo I (eds) Abstracts, ESF Workshop on Impact Markers in the Stratigraphic Record. Universidad de Granada, pp 57–58

    Google Scholar 

  • Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen Z, Shi GR (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29: 815–818

    Article  Google Scholar 

  • Kaiho K, Miura Y, Kedves M (2002) Spherules with Fe,Ni-bearing grains of Meishan Permian-Triassic boundary in China [abs.]. Lunar and Planetary Science 32, abs. #2052, CD-ROM

    Google Scholar 

  • Kerr AC, Tarney J, Marriner GF, Alvaro N, Saunders AD (1997) The Caribbean-Colombian Cretaceous Igneous Province: The internal anatomy of an oceanic plateau. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces: Continental, Oceanic And Planetary Flood Volcanism. American Geophysical Union, Washington, Geophysical Monograph 100: 123–143

    Chapter  Google Scholar 

  • Klöck H, Palme I, Tobschall HJ (1986) Trace elements in natural metallic iron from Disko Island, Greenland. Contributions to Mineralogy and Petrology 93: 273–282

    Article  Google Scholar 

  • Koeberl C, Gilmour I, Reimold WU, Claeys P, Ivanov B (2002) Comment on “End Permian catastrophe by bolide impact: evidence of a gigantic release of sulfur from the mantle”. Geology 30: 855–856

    Article  Google Scholar 

  • Koulouris J, Janle P, Milkereit B, Werner S (1999) Significance of large ocean impact craters. In: Gersonde R, Deutsch A (eds) Oceanic impacts: mechanisms and environmental perturbations. Berichte zur Polarforschung 343, Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven, pp 48–50

    Google Scholar 

  • Kravchenko S, Schachotko LI, Rass IT (1997) Moho discontinuity relief and the distribution of kimberlites and carbonatites in the northern Siberian Platform. Global Tectonics and Metallogeny 6: 137–140

    Google Scholar 

  • Kring DA (2000) Impact-induced hydrothermal activity and potential habitats for thermophilic and hypothermophilic life [abs.]. In: Catastrophic events and mass extinctions; impacts and beyond. Houston, Lunar and Planetary Institute Contribution no. 1053: 106–107

    Google Scholar 

  • Lakomy R (1990) Implications for cratering mechanics from a study of the Footwall breccia of the Sudbury impact structure, Canada. Meteoritics 25: 195–207

    Article  Google Scholar 

  • Lambert DD, Foster JG, Frick LR, Ripley EM, Zienteck ML (1998) Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system. Economic Geology and the Bulletin of the Society of Economic Geologists 93: 121–136

    Article  Google Scholar 

  • Langenhorst F, Deutsch A, Hornemann U (1998) On the shock behavior of calcite: Dynamic 85-GPa compression and multianvil decompression experiments [abs.]. Meteoritics and Planetary Science 33: A90

    Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Olshefsky K, Green T, Doherty W, Keays RR Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions. Contributions to Mineralogy and Petrology 128: 139–163

    Google Scholar 

  • Lo C-H, Chung S-L, Lee T-Y, Wu G (2002) Age of Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters 198: 449–458

    Article  Google Scholar 

  • Mahoney JJ, Coffin MF (eds) Large Igneous Provinces. American Geophysical Union, Geophysical Monograph 100, 438 pp

    Google Scholar 

  • Margot JL, Nolan MC, Benner LAM, Ostro SJ, Jurgens RF, Giorgini JD, Slade MA, Campbell DB (2002) Binary asteroids in the near-Earth object population. Science 296: 1445–1448

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29: 625–679

    Article  Google Scholar 

  • Melosh HJ (1989) Impact Cratering — A Geological Process. Oxford Monographs in Geology and Geophysics 11: 245 pp

    Google Scholar 

  • Melosh HJ (2000) Can impacts induce volcanic eruptions? [abs.]. In: Catastrophic events and mass extinctions; impacts and beyond. Houston, Lunar and Planetary Institute Contribution no. 1053: 141–142

    Google Scholar 

  • Miura Y, Uedo Y, Kedves M (2001) Formation of Fe-Ni particles by impact process [abs.]. Lunar and Planetary Science 32, abs. #2149, CD-ROM

    Google Scholar 

  • Molnar F, Watkinson DH, Everest JO (1999) Fluid-inclusion characteristics of hydrothermal Cu-Ni-PGE veins in granitic and metavolcanic rocks at the contact of the Little Stobie deposit, Sudbury, Canada. Chemical Geology 154: 279–301

    Article  Google Scholar 

  • Mooney WD (1999) Crustal and upper mantle seismic velocity structure of the former USSR. US Department of Defense. 21st Seismic Research Symposium: Technologies for Monitoring the Comprehensive Nuclear-Test-Ban Treaty, 162–171

    Google Scholar 

  • Morgan J, Warner M, Brittan J, Buffler R, Camargo A, Christeson G, Denton P, Hildebrand A, Hobs R, Macintyre H, Kackenzie G, Maguire P, Marin L, Nakamura Y, Pilkington M, Sharpton V, Snyder D, Saurez G, Trajo A (1997) Size and morphology of the Chicxulub structure. Nature 390: 472–476

    Article  Google Scholar 

  • Mundil R, Metcalfe I, Ludwig KR, Renne PR, Oberli F, Nicoll RS (2001) Timing of the Permian-Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations). Earth and Planetary Science Letters 187: 131–145

    Article  Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP, Singh AP (1993) A possible K-T boundary bolide impact site offshore Bombay and triggering of rapid Deccan volcanism. Physics of the Earth and Planetary Interiors 76: 189–197

    Article  Google Scholar 

  • Neumann GA, Zuber MT, Smith DE, Lemoine FG (1996) The lunar crust: Global signature and structure of major basins. Journal of Geophysical Research 101: 16,841–16,863

    Google Scholar 

  • Norman MD (1994) Sudbury Igneous Complex: Impact melt or endogenous magma? Implications for lunar crustal evolution. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America Special Paper 293: 331–341

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1993) Planetary cratering mechanics. Journal of Geophysical Research 98: 17011–17028

    Article  Google Scholar 

  • Oleynikov BV, Okrugin AV, Tomshin MD (1985) Native metals formation in basic rocks of the Siberian Platform, Yakutian Branch of the Soviet Academy of Sciences, Yakutsk, 188 pp (in Russian)

    Google Scholar 

  • Phinney EJ, Mann P, Coffin MF, Shipley TH (1999) Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the Solomon trench and Solomon Islands arc. Journal of Geophysical Research 104: 20449–20466

    Article  Google Scholar 

  • Pierazzo E, Vickery AM, Melosh HJ (1997) A re-evaluation of impact melt production. Icarus 127: 408–423

    Article  Google Scholar 

  • Poirier JP (2000) Physics of the Earth’s Interior. Cambridge University Press, Cambridge, 312 pp

    Book  Google Scholar 

  • Pond RB, Glass CM (1970) Metallurgical observations and energy partitioning. In: Kinslow R (ed) High Velocity Impact Phenomena. Academic Press, New York 579 pp

    Google Scholar 

  • Price NJ (2001) Major Impacts and Plate Tectonics. Routledge, London, 416 pp

    Google Scholar 

  • Rampino MR (1987) Impact cratering and flood-basalt volcanism. Nature 327: 468–468

    Article  Google Scholar 

  • Rampino MR, Stothers RB (1988) Flood basalt volcanism during the last 250 million years. Science 241: 663–668

    Article  Google Scholar 

  • Reichow MK, Saunders AD, White RV, Pringle MS, Mukhamedov IA, Medvedev AI, Kirda NP (2002) 40Ar/39Ar Dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296: 1846–1849

    Article  Google Scholar 

  • Retallack GJ, Seyedolali A, Krull ES, Holser WT, Ambers CP (1998) Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology 26: 979–982

    Article  Google Scholar 

  • Rhodes RC (1975) New evidence for impact origin of the Bushveld Complex, South Africa. Geology 3: 549–554

    Article  Google Scholar 

  • Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hotspot tracks: plume heads and tails. Science 246: 103–107

    Article  Google Scholar 

  • Richardson WP, Okal EA, Van der Lee S (2000) Rayleigh wave tomography of the Ontong-Java plateau. Physics of Earth and Planetary Interiors 118: 29–51

    Article  Google Scholar 

  • Robin E, Lefevre I, Rocchia R (2000) Extraterrestrial spinel in marine sediments: an overview [abs.]. In: Catastrophic events and mass extinctions; impacts and beyond. Houston, Lunar and Planetary Institute Contribution no. 1053: 182

    Google Scholar 

  • Roddy DJ, Schuster SH, Rosenblatt M, Grant LB, Hassig PJ, Kreyenhagen KN (1987) Computer simulations of large asteroid impacts into oceanic and continental sitespreliminary results on atmospheric, cratering and ejecta dynamics. International Journal of Impact Engineering 5: 525–54

    Article  Google Scholar 

  • Rogers GC (1982) Oceanic plateaus as meteorite impact signatures. Nature 299: 341–342

    Article  Google Scholar 

  • Ryabov YY, Anoshin GN (1999) Platinum-iron metallization in intrusive traps of the Siberian Platform. Geologiya i Geofizika 40: 162–174 (in Russian)

    Google Scholar 

  • Saunders AD, Storey M, Kent R, Norry M (1992) Consequences of plume-lithosphere interaction. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the Causes of Continental Break-Up. Geological Society of London Special Publication 68: 41–60

    Google Scholar 

  • Seyfert CK, Sirkin LA (1979) Earth History and Plate Tectonics. New York, Harper and Row, 96 pp

    Google Scholar 

  • Sharma M (1997) Siberian traps. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. American Geophysical Union, Washington. Geophysical Monograph 100: 273–295

    Chapter  Google Scholar 

  • Shoemaker EM, Wolfe RF, Shoemaker CS (1990) Asteroid and comet flux in the neighborhood of Earth. Sharpton VL, Ward PD (eds) Geological Society of America Special Paper 247: 155–170

    Google Scholar 

  • Shukulyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth — first confirmation of an extraterrestrial component. In: Gilmour I, Koeberl C (eds) Impacts and the early Earth. Lecture Notes in Earth Sciences 91, Springer, Heidelberg-Berlin, pp 99–105

    Chapter  Google Scholar 

  • Stöffler D, Deutsch A, Avermann M, Bischoff L, Brockmeyer P, Buhl D, Lakomy R, Müller-Mohr V (1994) The formation of the Sudbury structure, Canada: toward a unified impact model. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America Special Paper 293: 303–318

    Google Scholar 

  • Storey M, Mahoney JJ, Kroenke LW, Saunders AD (1991) Are oceanic plateaus sites of komatiite formation? Geology 19: 376–379

    Article  Google Scholar 

  • Swegle JW (1990) Irreversible phase transitions and wave propogation in silicate materials. Journal of Applied Science 68: 1563–1579

    Google Scholar 

  • Thompson RN, Gibson SA (2000) Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407: 502–506

    Article  Google Scholar 

  • Turtle EP, Pierazzo E (2000) Impact heating during formation of the Vredefort structure [abs.]. In: Catastrophic events and mass extinctions; impacts and beyond. Houston, Lunar and Planetary Institute Contribution no. 1053: 233

    Google Scholar 

  • Spakman W Bijwaard H 1999 Mesozoic subducted slabs under Siberia. Nature 397 246–249

    Google Scholar 

  • Walker RJ, Morgan JW, Beary ES, Smoliar MI, Czamanske GK, Horan MF (1997) Applications of the Pt-190-Os-186 isotope system to geochemistry and cosmochemistry. Geochimica et Cosmochimica Acta 61: 4799–4807

    Article  Google Scholar 

  • Weissman PR (1997) Long-period comets and the Oort Cloud. In: Remo JL (ed) Near-Earth Objects, the United Nations international conference. Annals of the New York Academy of Sciences, New York 822: 67–95

    Google Scholar 

  • White R, McKenzie DP (1989) Magmatism of rift zones; the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94: 7685–7729

    Article  Google Scholar 

  • Wignall P (2001) Large igneous provinces and mass extinctions. Earth Science Reviews 53: 1–33

    Article  Google Scholar 

  • Wilson L, Head JW (2001) Factors controlling the ascent of magmas on the moon [abs.]. Eos Transactions American Geophysical Union 82(20) Supplement, pp 240–241

    Google Scholar 

  • Wyllie PJ (1970) Magmas and volatile components. American Mineralogist 64: 469–500

    Google Scholar 

  • Yin YG, Wang Y, Wang W, Sheng QH, Cao CQ, Erwin DH (2000) Pattern of mass extinction near the Permian-Triassic boundary in South China. Science 289: 432–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, A.P., Price, D.G., DeCarli, P.S., Price, N., Clegg, R. (2003). Impact Decompression Melting: A Possible Trigger for Impact Induced Volcanism and Mantle Hotspots ?. In: Koeberl, C., Martínez-Ruiz, F.C. (eds) Impact Markers in the Stratigraphic Record. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55463-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55463-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62457-5

  • Online ISBN: 978-3-642-55463-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics