Advertisement

Authenticated Dictionary Based on Frequency

  • Kévin Atighehchi
  • Alexis Bonnecaze
  • Traian Muntean
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 428)

Abstract

We propose a model for data authentication which takes into account the behavior of the clients who perform queries. Our model reduces the size of the authenticated proof when the frequency of the query corresponding to a given data is higher. Existing models implicitly assume the frequency distribution of queries to be uniform, but in reality, this distribution generally follows Zipf’s law. Therefore, our model better reflects reality and the communication cost between clients and the server provider is reduced allowing the server to save bandwith. When the frequency distribution follows Zipf’s law, we obtain a gain of at least 20% on the average proof size compared to existing schemes.

Keywords

Authenticated dictionary Data structure Merkle tree Zipf 

References

  1. 1.
    Adamic, L.A., Huberman, B.A.: Zipf’s law and the internet. Glottometrics 3, 143–150 (2002)Google Scholar
  2. 2.
    Bayardo, R.J.: Merkle tree authentication of http responses. In: In Proc. 14th WWW, pp. 1182–1183 (2005)Google Scholar
  3. 3.
    Blibech, K., Gabillon, A.: Chronos: an authenticated dictionary based on skip lists for timestamping systems. In: SWS, pp. 84–90 (2005)Google Scholar
  4. 4.
    Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using undeniable attestations. IACR Cryptology ePrint Archive, 2000:27 (2000)Google Scholar
  5. 5.
    Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic Third-party Data Publication. In: Thuraisingham, B., van de Riet, R., Dittrich, K.R., Tari, Z. (eds.) 14th IFIP 11.3 Working Conference in Database Security. IFIP, vol. 73, pp. 101–112. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Easley, D., Kleinberg, J.: Power laws and rich-get-richer phenomena. In: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2010)Google Scholar
  7. 7.
    Gassko, I., Gemmell, P.S., MacKenzie, P.D.: Efficient and fresh certification. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 342–353. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Goodrich, M.T., Tamassia, R.: Efficient authenticated dictionaries with skip lists and commutative hashing. Technical report, Johns Hopkins Information Security Institute (2001)Google Scholar
  9. 9.
    Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated dictionary with skip lists and commutative hashing 2, 68–82 (2001)Google Scholar
  10. 10.
    Kaufman, C., Perlman, R.J., Speciner, M.: Network security - private communication in a public world. Prentice Hall series in computer networking and distributed systems. Prentice Hall (1995)Google Scholar
  11. 11.
    Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited huffman codes. J. ACM 37(3), 464–473 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M., Williamson, C.: A tale of the tails: Power-laws in internet measurements. IEEE Network 27(1), 59–64 (2013)CrossRefGoogle Scholar
  13. 13.
    Mehta, D.P., Sahni, S. (eds.): Handbook of data structures and applications. Chapman & Hall/CRC (2005)Google Scholar
  14. 14.
    Merkle, R.: Protocols for public key cryptosystems. In: SIMMONS: Secure Communications and Asymmetric Cryptosystems (1982)Google Scholar
  15. 15.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Selected Areas in Communications 18(4), 561–570 (2000)CrossRefGoogle Scholar
  17. 17.
    Nielsen, J.: Do websites have increasing returns (1997), http://www.nngroup.com/articles/do-websites-have-increasing-returns/
  18. 18.
    Nielsen, J.: A note about page popularity (2006), http://www.nngroup.com/articles/traffic-log-patterns/
  19. 19.
    Preneel, B., Van Rompay, B., Quisquater, J.J., Massiasand, H., Serret Avila, J.: Design of a Timestamping System (1999)Google Scholar
  20. 20.
    Pugh, W.: Skip lists: A probabilistic alternative to balanced trees (1990)Google Scholar
  21. 21.
    Saichev, A.I., Malevergne, Y., Sornette, D.: Theory of Zipf’s Law and Beyond. Lecture Notes in Economics and Mathematical Systems. Springer (2009)Google Scholar
  22. 22.
    Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Kévin Atighehchi
    • 1
  • Alexis Bonnecaze
    • 1
  • Traian Muntean
    • 1
  1. 1.CNRS, Centrale Marseille, ERISCS, I2M, UMR 7373Aix Marseille UniversityMarseilleFrance

Personalised recommendations