Towards a Framework for Benchmarking Privacy-ABC Technologies

  • Fatbardh Veseli
  • Tsvetoslava Vateva-Gurova
  • Ioannis Krontiris
  • Kai Rannenberg
  • Neeraj Suri
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 428)


Technologies based on attribute-based credentials (Privacy-ABC) enable identity management systems that require minimal disclosure of personal information and provide unlinkability of user’s transactions. However, underlying characteristics of and differences between Privacy-ABC technologies are currently not well understood. In this paper, we present our efforts in defining a framework for benchmarking Privacy-ABC technologies, and identifying an extensive set of benchmarking criteria and factors impacting such benchmarks. In addition, we identify important challenges in the adoption of Privacy-ABC technologies, indicating directions for future research.


Smart Card Signature Scheme Security Proof Security Assurance Anonymous Credential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Paquin, C., Zaverucha, G.: U-prove Cryptographic Specification v1.1 (Revision 2). Technical report, Microsoft Corporation (2013)Google Scholar
  2. 2.
    Bichsel, P., Binding, C., Camenisch, J., Gro, T., Heydt-Benjamin, T., Sommer, D., Zaverucha, G.: Cryptographic Protocols of the Identity Mixer Library. Technical Report RZ 3730 (99740), IBM Research GmbH (2008)Google Scholar
  3. 3.
    Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press (2000)Google Scholar
  5. 5.
    Vullers, P., Alpár, G.: Efficient Selective Disclosure on Smart Cards Using Idemix. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT, vol. 396, pp. 53–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Mostowski, W., Vullers, P.: Efficient U-Prove Implementation for Anonymous Credentials on Smart Cards. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 243–260. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lapon, J., Kohlweiss, M., De Decker, B., Naessens, V.: Performance Analysis of Accumulator-Based Revocation Mechanisms. In: Rannenberg, K., Varadharajan, V., Weber, C. (eds.) SEC 2010. IFIP AICT, vol. 330, pp. 289–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Noninteractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Aarnes, A., Just, M., Knapskog, S., Lloyd, S., Meijer, H.: Selecting Revocation Solutions for PKI (2000)Google Scholar
  13. 13.
    Lapon, J., Kohlweiss, M., De Decker, B., Naessens, V.: Analysis of Revocation Strategies for Anonymous Idemix Credentials. In: De Decker, B., Lapon, J., Naessens, V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 3–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Luna, J., Langenberg, R., Suri, N.: Benchmarking Cloud Security Level Agreements Using Quantitative Policy Trees. In: CCSW, pp. 103–112. ACM (2012)Google Scholar
  15. 15.
    Luna, J., Ghani, H., Vateva, T., Suri, N.: Quantitative Assessment of Cloud Security Level Agreements: A Case Study. In: SECRYPT, pp. 64–73. SciTePress (2012)Google Scholar
  16. 16.
    Parrend, P.: Security benchmarks of OSGi platforms: toward Hardened OSGi. Softw., Pract. Exper. 39(5), 471–499 (2009)CrossRefGoogle Scholar
  17. 17.
    Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and Languages for Privacy-Preserving Attribute-Based Authentication. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT, vol. 396, pp. 34–52. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K., Zwingelberg, H.: D2.1 Architecture for Attribute-based Credential Technologies - Version 1. ABC4TRUST - Deliverable to the European Commision (2011),
  19. 19.
    ABC4Trust: Abc4trust pilots, (last accessed on December 14, 2013)

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Fatbardh Veseli
    • 1
  • Tsvetoslava Vateva-Gurova
    • 2
  • Ioannis Krontiris
    • 1
  • Kai Rannenberg
    • 1
  • Neeraj Suri
    • 2
  1. 1.Chair of M-Business & Multilateral SecurityGoethe University FrankfurtGermany
  2. 2.Department of Computer ScienceTechnische Universität DarmstadtGermany

Personalised recommendations