Advertisement

Rheological Properties and Processing

  • Helmut Münstedt
  • Friedrich Rudolf Schwarzl
Chapter

Abstract

Rheological properties of a polymer can be very useful to assess some aspects of processing. For a successful application of rheological data it has to be taken into account, however, that they strongly depend on temperature, time, and stress or strain rate, respectively. Therefore, the rheological behavior measured in laboratory tests can be of relevance for processing only, if the regimes of the parameters mentioned above are comparable to each other. The role of melt flow rate and viscosity functions for processing is discussed. Furthermore it is shown, how the measurement of flow profiles can be used to get a deeper insight into the reduction of “shark skin” and the extrusion of cast films. Finally, the importance of the elongational behavior of melts for film blowing and foaming is addressed.

Keywords

Strain Hardening Flow Profile Elongational Rate Film Casting Elongational Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    International standard ISO 1183Google Scholar
  2. 2.
    Steffl T (2004) Doctoral thesis. University Erlangen-Nürnberg, Shaker Verlag, Aachen, ISBN 3-8322-2737-7Google Scholar
  3. 3.
    Schwetz M (2002) Doctoral thesis. Shaker Verlag, Aachen, ISBN 3-8322-0935-2Google Scholar
  4. 4.
    Ramamurthy AV (1986) J Rheol 30:337CrossRefGoogle Scholar
  5. 5.
    Kalika DS, Denn MM (1987) J Rheol 31:815CrossRefGoogle Scholar
  6. 6.
    Agassant JF, Avenas P, Sergent JP, Carreau PJ (1977) Polymer processing principles and modelling. Hanser Publishing, MunichGoogle Scholar
  7. 7.
    D’Halewyu S, Agassant JF, Demay Y (1990) Polym Eng Sci 30:335CrossRefGoogle Scholar
  8. 8.
    Sakaki K, Katsumoto R, Kajiwara T, Funatsu K (1996) Polym Eng Sci 36:1821CrossRefGoogle Scholar
  9. 9.
    Seyfzadeh B, Harrison GM, Carlson CD (2005) Polym Eng Sci 45:443CrossRefGoogle Scholar
  10. 10.
    Griess HJ, Burghelea TI, Münstedt H (2012) Polym Eng Sci 52:615CrossRefGoogle Scholar
  11. 11.
    Griess HJ, Münstedt H (2012) Polym Eng Sci 52:2253CrossRefGoogle Scholar
  12. 12.
    Winter HH, Fritz HG (1986) Polym Eng Sci 26:543CrossRefGoogle Scholar
  13. 13.
    Reid JD, Campanella OH, Corvalan CM, Okos MR (2003) Poly Eng Sci 45:693CrossRefGoogle Scholar
  14. 14.
    Münstedt H, Kurzbeck S, Stange J (2006) Polymer Eng Sci 46:1190CrossRefGoogle Scholar
  15. 15.
    Kurzbeck S (1999) Doctoral Thesis. University Erlangen-Nürnberg, ErlangenGoogle Scholar
  16. 16.
    Pearson J, Petrie C (1970) Plast Polym 38:85Google Scholar
  17. 17.
    Han CD, Park J (1975) J Appl Polym Sci 19:3257CrossRefGoogle Scholar
  18. 18.
    Wagner M (1976) Doctoral thesis. University Stuttgart, GermanyGoogle Scholar
  19. 19.
    Münstedt H, Kurzbeck S, Stange J (2006) Macromol Symp 245:181CrossRefGoogle Scholar
  20. 20.
    Bradley MB, Phillips EM (1991) Plast Eng 47:82Google Scholar
  21. 21.
    Park CB, Cheung LK (1997) Polym Eng Sci 37:1CrossRefGoogle Scholar
  22. 22.
    Den Doelder CFJ, Sammler RL, Koopmans RJ, Paquet AN (2002) Cell Polym 21:99Google Scholar
  23. 23.
    Meissner J (1971) Rheol Acta 10:230CrossRefGoogle Scholar
  24. 24.
    Stange J (2006) Doctoral thesis. University Erlangen-Nürnberg, Shaker Verlag, Aachen, ISBN 3-8322-5521-4Google Scholar
  25. 25.
    Stange J, Münstedt H (2006) Cell Plas 42:445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lehrstuhl für PolymerwerkstoffeFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations