Genomic Insights into Xylella fastidiosa Interactions with Plant and Insect Hosts

  • Adam C. Retchless
  • Fabien Labroussaa
  • Lori Shapiro
  • Drake C. Stenger
  • Steven E. Lindow
  • Rodrigo P. P. Almeida


The genome of Xylella fastidiosa encodes the properties that enable it to alternately colonize its plant and insect hosts. In this chapter, we take a holistic approach and explore X. fastidiosa evolution, biology, and management based on information and insights that would not have been possible, or would have been technically challenging, during the pre-genomics period of plant pathology. Analysis of genome sequences illustrates the major physiological differences between X. fastidiosa and plant pathogens in the sibling genus Xanthomonas, which possess substantially larger genomes and a variety of genes that are essential for pathogenicity, yet absent from the X. fastidiosa genome. Genome sequence data have enabled reverse-genetic approaches to transfer knowledge from more genetically tractable organisms, along with examination of gene regulatory effects that are involved in colonization of the various hosts. The availability of reference genome sequences has also facilitated the examination of genetic diversity among X. fastidiosa found in different geographic regions and different host plants. Existing data demonstrates the importance of mobile genetic elements in producing genetic diversity among X. fastidiosa isolates. Genome-wide descriptions of diversity will be a powerful tool to identify the genetic changes that underlie the emergence of new agricultural diseases.


Xylem Vessel Xylem Fluid Diffusible Signaling Factor Xylella Fastidiosa Bacterial Plant Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank students, researchers, and colleagues that have contributed to the work discussed here. ACR is supported by a postdoctoral fellowship from the Miller Institute for Basic Research in Science. LRS is supported by a postdoctoral fellowship in biology from the NSF.


  1. Agüero CB, Uratsu SL, Greve C et al (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51PubMedGoogle Scholar
  2. Almeida RPP, Backus EA (2004) Stylet penetration behaviors of Graphocephala atropunctata (Signoret) (Hemiptera, Cicadellidae): EPG waveform characterization and quantification. Ann Entomol Soc Am 97:838–851Google Scholar
  3. Almeida RPP, Purcell AH (2003a) Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J Econ Entomol 96:264–271PubMedGoogle Scholar
  4. Almeida RPP, Purcell AH (2003b) Biological traits of Xylella fastidiosa strains from grapes and almonds. Appl Environ Microbiol 69:7447–7452PubMedCentralPubMedGoogle Scholar
  5. Almeida RPP, Purcell AH (2006) Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann Entomol Soc Am 99:884–890Google Scholar
  6. Almeida RPP, Blua MJ, Lopes JRS et al (2005) Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann Entomol Soc Am 98:775–786Google Scholar
  7. Almeida RPP, Nascimento FE, Chau J et al (2008) Genetic structure and biology of Xylella fastidiosa strains causing disease in citrus and coffee in Brazil. Appl Environ Microbiol 74:3690–3701PubMedCentralPubMedGoogle Scholar
  8. Almeida RPP, Killiny N, Newman KL et al (2012) Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa. Mol Plant Microbe Interact 25:453–462PubMedGoogle Scholar
  9. Andersen P, Brodbeck B (1989) Temperature and temperature preconditioning on flux and chemical composition of xylem exudate from muscadine grapevines. J Am Soc Hort Sci 114:440–444Google Scholar
  10. Baccari C, Lindow SE (2011) Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Phytopathology 101:77–84PubMedGoogle Scholar
  11. Backus EA, Habibi J, Yan FM et al (2005) Stylet penetration by adult Homalodisca coagulata on grape: Electrical penetration graph waveform characterization, tissue correlation, and possible implications for transmission of Xylella fastidiosa. Ann Entomol Soc Am 98:787–813Google Scholar
  12. Barber CE, Tang JL, Feng JX et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566PubMedGoogle Scholar
  13. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246PubMedGoogle Scholar
  14. Beaulieu ED, Ionescu M, Chatterjee S et al (2013) Characterization of a diffusible signaling factor from Xylella fastidiosa. mBio 4:e00539-12Google Scholar
  15. Berisha B, Chen YD, Zhang GY et al (1998) Isolation of Peirce’s disease bacteria from grapevines in Europe. Eur J Plant Pathol 104:427–433Google Scholar
  16. Bhattacharyya A, Stilwagen S, Ivanova N et al (2002) Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc Natl Acad Sci USA 99:12403–12408PubMedCentralPubMedGoogle Scholar
  17. Blom J, Albaum SP, Doppmeier D et al (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinf 10:154Google Scholar
  18. Brlansky RH, Timmer LW, French WJ et al (1983) Colonization of the sharpshooter vectors, Oncometopia nigricans and Homalodisca coagulata, by xylem-limited bacteria. Phytopathology 73:530–535Google Scholar
  19. Caserta R, Takita MA, Targon ML et al (2010) Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 76:4250–4259PubMedCentralPubMedGoogle Scholar
  20. Chapman RF (1998) The insects, structure and function, 4th edn. Cambridge University Press, Cambridge, p 770Google Scholar
  21. Chatelet DS, Wistrom CM, Purcell AH et al (2011) Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann Bot 108:73–85PubMedCentralPubMedGoogle Scholar
  22. Chatterjee S, Almeida RPP, Lindow SE (2008a) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Ann Rev Phytopathol 46:243–271Google Scholar
  23. Chatterjee S, Wistrom C, Lindow SE (2008b) A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675PubMedCentralPubMedGoogle Scholar
  24. Chatterjee S, Newman KL, Lindow SE (2008c) Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microbe Interact 21:1309–1315PubMedGoogle Scholar
  25. Chatterjee S, Killiny N, Almeida RPP et al (2010) Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Mol Plant Microbe Interact 23:1356–1363PubMedGoogle Scholar
  26. Chen J, Xie G, Han S et al (2010) Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch disease in California. J Bacteriol 192:4534PubMedCentralPubMedGoogle Scholar
  27. Clifford JC, Rapicavoli JN, Roper MC (2013) A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant Microbe Interact 26:676–685PubMedGoogle Scholar
  28. Coletta-Filho HD, Takita MA, De Souza AA et al (2001) Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl Environ Microbiol 67:4091–4095PubMedCentralPubMedGoogle Scholar
  29. Coletta-Filho HD, Bittleston LS, Almeida RPP (2011) Spatial genetic structure of a vector-borne generalist pathogen. Appl Environ Microbiol 77:2596–2601PubMedCentralPubMedGoogle Scholar
  30. Colnaghi Simionato AV, da Silva DS, Lambais M et al (2007) Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J Mass Spect 42:1375–1381Google Scholar
  31. Comas I, Moya A, Gonzales-Candelas F (2007) From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic & #x03B3;-proteobacteria as a test case. Syst Biol 56:1–16PubMedGoogle Scholar
  32. Cursino L, Li Y, Zaini PA et al (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199PubMedGoogle Scholar
  33. Cursino L, Galvani CD, Athinuwat D et al (2011) Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa. Mol Plant Microbe Interact 24:1198–1206PubMedGoogle Scholar
  34. Damsteegt VD, Brlansky RH, Phillips PA et al (2006) Transmission of Xylella fastidiosa, causal agent of citrus variegated chlorosis, by the glassy-winged sharpshooter, Homalodisca coagulata. Plant Dis 90:567–570Google Scholar
  35. Dandekar AM, Gouran H, Ibáñez AM et al (2012) An engineered innate immune defense protects grapevines from Pierce disease. Proc Natl Acad Sci USA 109:3721–3725PubMedCentralPubMedGoogle Scholar
  36. Daugherty MP, Almeida RPP (2009) Estimating Xylella fastidiosa transmission parameters: decoupling sharpshooter number and feeding period. Entomol Exp Appl 132:84–92Google Scholar
  37. Daugherty MP, Lopes JRS, Almeida RPP (2010) Vector within-host feeding preference mediates transmission of a heterogeneously distributed pathogen. Ecol Entomol 35:360–366Google Scholar
  38. Davis MJ, Purcell AH, Thomson SV (1978) Pierce’s disease of grapevines: isolation of the causal bacterium. Science 199:75–77PubMedGoogle Scholar
  39. De La Fuente L, Burr TJ, Hoch HC (2007) Mutations in Type I and Type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 189:7507–7510Google Scholar
  40. Doi Y, Teranaka M, Yora K et al (1967) Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or Paulownia witches’ broom. Ann Phytopath Soc Jpn 33:259–266Google Scholar
  41. Dow JM, Crossman L, Findlay K et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000PubMedCentralPubMedGoogle Scholar
  42. Dugravot S, Backus EA, Reardon BJ et al (2008) Correlations of cibarial muscle activities of Homalodisca ssp. sharpshooters (Hemiptera: Cicadellidae) with EPG ingestion waveform and excretion. J Insect Physiol 54:1467–1478PubMedGoogle Scholar
  43. Esnault E, Valens M, Espéli O, Boccard F (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3:e226PubMedCentralPubMedGoogle Scholar
  44. European and Mediterranean Plant Protection Organization (2004) Diagnostic protocols for regulated pests: Xylella fastidiosa. OEPP/EPPO Bulletin, pp 155–157Google Scholar
  45. Federal Register (2012) Agricultural bioterrorism protection act of 2002; biennial review and republication of the select agent and toxin list; amendments to the select agent and toxin regulationsGoogle Scholar
  46. Frazier NW (1965) Xylem viruses and their insect vectors. Proceedings international conference on virus and vector on perennial hosts, with special reference to Vitis. University of California, Division of Agricultural Sciences, Davis, California, pp 91–99Google Scholar
  47. Freitag JH (1951) Host range of Pierce’s disease virus of grapes as determined by insect transmission. Phytopathology 41:920–934Google Scholar
  48. Fry SM, Milholland RD (1990) Response of resistant, tolerant, and susceptible grapevine tissues to invasion by the Pierce’s disease bacterium, Xylella fastidiosa. Phytopathology 80:66–69Google Scholar
  49. Fuller KB (2012) The economics of Pierce’s Disease in the California winegrape industry. University of California, Davis, PhD, DissertationGoogle Scholar
  50. Goodwin PH, Zhang S (1997) Distribution of Xylella fastidiosa in southern Ontario as determined by the polymerase chain reaction. Can. J. Plant Pathol. 19:13–18Google Scholar
  51. Greenspan MD, Schultz HR, Matthews MA (1996) Field evaluation of water transport in grape berries during water deficits. Physiol Plant 97:55–62Google Scholar
  52. Guilhabert MR, Kirkpatrick BC (2003) Transformation of Xylella fastidiosa with broad host range RSF1010 derivative plasmids. Mol Plant Pathol 4:279–285PubMedGoogle Scholar
  53. Guilhabert MR, Kirkpatrick BC (2005) Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol Plant Microbe Interact 18:856–868PubMedGoogle Scholar
  54. Guilhabert MR, Stewart VJ, Kirkpatrick BC (2006) Characterization of putative rolling-circle plasmids from the Gram-negative bacterium Xylella fastidiosa and their use as shuttle vectors. Plasmid 55:70–80PubMedGoogle Scholar
  55. Ham JJ (2013) Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol Plant Pathol 14:308–322PubMedGoogle Scholar
  56. He YW, Wu J, Cha JS, Zhang LH (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187Google Scholar
  57. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363PubMedGoogle Scholar
  58. Hendson M, Purcell AH, Chen D et al (2001) Genetic diversity of Pierce’s disease strains and other pathotypes of Xylella fastidiosa. Appl Environ Microbiol 67:895–903PubMedCentralPubMedGoogle Scholar
  59. Hewitt WB (1958) The probable home of Pierce’s disease virus. Am J Enol Vitic 9:94–98Google Scholar
  60. Hewitt WB, Frazier NW, Freitag JH (1949) Pierce’s disease investigations. Hilgardia 19:207–264Google Scholar
  61. Hill BL, Purcell AH (1995a) Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85:1368–1372Google Scholar
  62. Hill BL, Purcell AH (1995b) Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85:209–212Google Scholar
  63. Hill BL, Purcell AH (1997) Populations of Xylella fastidiosa in plants required for transmission by an efficient vector. Phytopathology 87:1197–1201PubMedGoogle Scholar
  64. Hopkins DL (1985) Physiological and pathological characteristics of virulent and avirulent strains of the bacterium that causes Pierce’s disease of grapevine. Phytopathology 75:713–717Google Scholar
  65. Hopkins DL (1989) Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290Google Scholar
  66. Hopkins DL, Mollenhauer HH (1973) Rickettsia-like bacterium associated with Pierce’s disease of grapes. Science 179:298–300PubMedGoogle Scholar
  67. Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066Google Scholar
  68. Ishida ML, Andersen PC, Leite B (2004) Effect of Vitis vinifera L. cv. Chardonnay xylem fluid on cecropin B activity against Xylella fastidiosa. Mol Plant Pathol 64:73–81Google Scholar
  69. Killiny N, Almeida RPP (2009a) Xylella fastidiosa afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. Appl Environ Microbiol 75:521–528PubMedCentralPubMedGoogle Scholar
  70. Killiny N, Almeida RPP (2009b) Host structural carbohydrate induces vector transmission of a bacterial plant pathogen. Proc Natl Acad Sci USA 106:22416–22420PubMedCentralPubMedGoogle Scholar
  71. Killiny N, Prado SS, Almeida RPP (2010) Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Appl Environ Microbiol 76:6134–6140PubMedCentralPubMedGoogle Scholar
  72. Killiny N, Almeida RPP (2011) Gene regulation mediates host specificity of a bacterial pathogen. Environ Microbiol Rep 3:791–797PubMedGoogle Scholar
  73. Killiny N, Rashed A, Almeida RPP (2012) Disrupting the transmission of a vector-borne plant pathogen. Appl Environ Microbiol 78:638–643PubMedCentralPubMedGoogle Scholar
  74. Killiny N, Hernandez Martinez R, Dumenyo CK et al (2013) The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence and vector transmission. Mol Plant Microbe Interact 26:1044–1053PubMedGoogle Scholar
  75. Kono N, Arakawa K, Tomita M (2011) Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genom 12:19Google Scholar
  76. Kovach M, Elzer P, Hill D et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176PubMedGoogle Scholar
  77. Krell RK, Boyd EA, Nay JE et al (2007) Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am J Enol Vitic 58:211–216Google Scholar
  78. Krivanek AF, Walker MA (2005) Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 95:44–52PubMedGoogle Scholar
  79. Krugner R, Sisterson MS, Lin H (2012) Effects of gender, origin, and age on transmission of Xylella fastidiosa to grapevines by Homalodisca vitripennis (Hemiptera: Cicadellidae). Ann Entomol Soc Am 105:280–286Google Scholar
  80. Kung SH, Almeida RPP (2011) Natural competence and recombination in the plant pathogen Xylella fastidiosa. Appl Environ Microbiol 77:5278–5284PubMedCentralPubMedGoogle Scholar
  81. Kung SH, Retchless AC, Kwan JY et al (2013) Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 79:1712–1717PubMedCentralPubMedGoogle Scholar
  82. Lee MW, Rogers EE, Stenger DC (2010) Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa. Appl Environ Microbiol 76:7734–7740PubMedCentralPubMedGoogle Scholar
  83. Lee MW, Rogers EE, Stenger DC (2012) Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102:32–40PubMedGoogle Scholar
  84. Lindeberg M, Cunnac S, Collmer A (2009) The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10:767–775PubMedGoogle Scholar
  85. Lopes JRS, Daugherty MP, Almeida RPP (2009) Context-dependent transmission of a generalist plant pathogen: host species and pathogen strain mediate insect vector competence. Entomol Exp Appl 131:216–224Google Scholar
  86. Lopes SA, Marcussi S, Torres SCZ et al (2003) Weeds as alternative hosts of the citrus, coffee, and plum strains of Xylella fastidiosa in Brazil. Plant Dis 87:544–549Google Scholar
  87. Ma W, Dong FFT, Stavrinides J et al (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209PubMedCentralPubMedGoogle Scholar
  88. Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A et al (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32:3781–3791PubMedCentralPubMedGoogle Scholar
  89. Matsumoto A, Young GM, Igo MM (2009) Chromosome-based genetic complementation system for Xylella fastidiosa. Appl Environ Microbiol 75:1679–1687PubMedCentralPubMedGoogle Scholar
  90. Mei J, Benashski S, Firshein W (1995) Interactions of the origin of replication (oriV) and initiation proteins (TrfA) of plasmid RK2 with submembrane domains of Escherichia coli. J Bacteriol 177:6766–6772PubMedCentralPubMedGoogle Scholar
  91. Meidanis J, Braga MDV, Verjovski-Almeida S (2002) Whole-genome analysis of transporters in the plant pathogen Xylella fastidiosa. Microbiol Mol Biol Rev 66:272–299PubMedCentralPubMedGoogle Scholar
  92. Meng Y, Li Y, Galvani CD et al (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567PubMedCentralPubMedGoogle Scholar
  93. Meyer MM, Kirkpatrick BC (2011) Exogenous applications of abscisic acid increase curing of Pierce’s disease-affected grapevines growing in pots. Plant Dis 95:173–177Google Scholar
  94. Minsavage GV, Thompson CM, Hopkins DL et al (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84:456–461Google Scholar
  95. Monteiro PB, Teixeira DC, Palma RR et al (2001) Stable transformation of the Xylella fastidiosa citrus variegated chlorosis strain with oriC plasmids. Appl Environ Microbiol 67:2263–2269PubMedCentralPubMedGoogle Scholar
  96. Monteiro-Vitorello CB, De Oliveira MC, Zerillo MM et al (2005) Xylella and Xanthomonas mobil’omics. OMICS 9:146–159PubMedGoogle Scholar
  97. Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633PubMedGoogle Scholar
  98. Moreira LM, De Souza RF, Almeida NF Jr, Setubal JC, Oliveira JC, Furlan LR, Ferro JA, da Silva AC (2004) Comparative genomics analyses of citrus-associated bacteria. Annu Rev Phytopathol 42:163–184Google Scholar
  99. Moreira LM, De Souza RF, Digiampietri LA, Da Silva AC, Setubal JC (2005) Comparative analyses of Xanthomonas and Xylella complete genomes. OMICS 9:43–76Google Scholar
  100. Newman KL, Almeida RPP, Purcell AH et al (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327PubMedCentralPubMedGoogle Scholar
  101. Newman KL, Almeida RPP, Purcell AH et al (2004) Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci USA 101:1737–1742PubMedCentralPubMedGoogle Scholar
  102. Nunes LR, Rosato YB, Muto NH et al (2003) Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Res 13:570–578PubMedCentralPubMedGoogle Scholar
  103. Nunney L, Yuan X, Bromley R et al (2010) Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce’s disease of grapevine in the US. PLos One 5:e15488PubMedCentralPubMedGoogle Scholar
  104. Nunney L, Yuan X, Bromley RE et al (2012) Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Appl Environ Microbiol 78:4702–4714PubMedCentralPubMedGoogle Scholar
  105. Nunney L, Vickerman DB, Bromley RE et al (2013) Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Appl Environ Microbiol 79:2189–2200PubMedCentralPubMedGoogle Scholar
  106. Nunney L, Schuenzel EL, Scally M, Bromley RE, Stouthamer R (2014) Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl Environ Microbiol 80:3025–3033Google Scholar
  107. Paião FG, Meneguim AM, Casagrande EC et al (2002) Envolvimento de cigarras (Homoptera, Cicadidae) na transmissão de Xylella fastidiosa em cafeeiro. Fitopatol Brasil 27:S67Google Scholar
  108. Perez-Donoso AG, Sun Q, Roper MC et al (2010) Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol 152:1748–1759PubMedCentralPubMedGoogle Scholar
  109. Pierce NB (1892) The California vine disease. US Dept Agric Div Veg Pathol Bull 2:22 Google Scholar
  110. Pieretti I, Royer M, Barbe V et al (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genom 10:616Google Scholar
  111. Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov, sp nov, a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157PubMedGoogle Scholar
  112. Pooler MR, Hartung JS, Fenton RG (1997) Sequence analysis of a 1296-nucleotide plasmid from Xylella fastidiosa. FEMS Microbiol Lett 155:217–222PubMedGoogle Scholar
  113. Purcell AH (2013) Paradigms: examples from the bacterium Xylella fastidiosa. Annu Rev Phytopathol 51:339–356PubMedGoogle Scholar
  114. Purcell AH (1977) Cold therapy of Pierce’s disease of grapevines. Plant Dis Rep 61:514–518Google Scholar
  115. Purcell AH (1980) Environmental therapy for Pierce’s disease of grapevines. Plant Dis 64:388–390Google Scholar
  116. Purcell AH, Finlay AH (1979) Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter leafhoppers. Phytopathology 69:393–395Google Scholar
  117. Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Ann Rev Phytopathol 34:131–151Google Scholar
  118. Purcell AH, Saunders SR (1999) Fate of Pierce’s disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis 83:825–830Google Scholar
  119. Purcell AH, Finlay AH, McLean DL (1979) Pierce’s disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–841PubMedGoogle Scholar
  120. Qin X, Hartung JS (2001) Construction of a shuttle vector and transformation of Xylella fastidiosa with plasmid DNA. Curr Microbiol 43:158–162PubMedGoogle Scholar
  121. Randall JJ, Goldberg NP, Kemp JD et al (2009) Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Appl Environ Microbiol 75:5631–5638PubMedCentralPubMedGoogle Scholar
  122. Rashed A, Killiny N, Kwan J et al (2011) Background matching behaviour and pathogen acquisition: plant site preference does not predict the bacterial acquisition efficiency of vectors. Arthropod Plant Interact 5:97–106Google Scholar
  123. Rathé AA, Pilkington LJ, Gurr GM et al (2012a) Potential for persistence and within-plant movement of Xylella fastidiosa in Australian native plants. Aus Plant Pathol 41:405–412Google Scholar
  124. Rathé AA, Pilkington LJ, Gurr GM et al (2012b) Incursion preparedness: anticipating the arrival of an economically important plant pathogen Xylella fastidiosa Wells (Proteobacteria: Xanthomonadaceae) and the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) in Australia. Aus J Entomol 51:209–220Google Scholar
  125. Redak RA, Purcell AH, Lopes JRS et al (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Ann Rev Entomol 49:243–270Google Scholar
  126. Reddy JD, Reddy SL, Hopkins DL et al (2007) TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:403–410PubMedGoogle Scholar
  127. Rocha EPC (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286PubMedCentralPubMedGoogle Scholar
  128. Rocha EPC (2008) The organization of the bacterial genome. Ann Rev Genet 42:211–233PubMedGoogle Scholar
  129. Rodriguez LM, Grajales A, Arrieta-Ortiz ML et al (2012) Genomes-based phylogeny of the genus Xanthomonas. BMC Microbiol 12:43Google Scholar
  130. Rogers EE, Stenger DC (2012) A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa. PloS One 7:e52131PubMedCentralPubMedGoogle Scholar
  131. Roper MC, Greve LC, Warren JG et al (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419PubMedGoogle Scholar
  132. Rosa C, Kamita SG, Falk BW (2012) RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. Pest Managem Sci 68:995–1002Google Scholar
  133. Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858PubMedGoogle Scholar
  134. Sandanayaka WRM, Backus EA (2008) Quantitative comparison of stylet penetration behaviors of glassy-winged sharpshooter on selected hosts. J Econ Entomol 101:1183–1197PubMedGoogle Scholar
  135. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:668Google Scholar
  136. Scally M, Schuenzel EL, Stouthamer R et al (2005) Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Appl Environ Microbiol 71:8491–8499PubMedCentralPubMedGoogle Scholar
  137. Schaad NW, Postnikova E, Lacy G et al (2004) Xylella fastidiosa subspecies: X. fastidiosa subsp piercei, subsp. nov, X. fastidiosa subsp. multiplex subsp. nov, and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300PubMedGoogle Scholar
  138. Schreiber HL, Koirala M, Lara A et al (2010) Unraveling the first Xylella fastidiosa subsp fastidiosa genome from Texas. Southwest Entomol 35:479–483Google Scholar
  139. Severin HHP (1949) Transmission of the virus of Pierce’s diseasae of grapevines by leafhoppers. Hilgardia 19:190–206Google Scholar
  140. Severin HHP (1950) Spittle-insect vectors of Pierce’s disease virus II. Life history and virus transmission. Hilgardia 19:357–382Google Scholar
  141. Sharp PM, Bailes E, Grocock RJ et al (2005) Variation in the strength of selected codon usage bias among bacteria. Nucl Acids Res 33:1141–1153PubMedCentralPubMedGoogle Scholar
  142. Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Phil Trans Royal Soc London B 365:1203–1212Google Scholar
  143. Shi XY, Dumenyo CK, Hernandez-Martinez R et al (2009) Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA. Appl Environ Microbiol 75:2275–2283PubMedCentralPubMedGoogle Scholar
  144. Silva FR, Vettore AL, Kemper EL et al (2001) Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett 203:165–171PubMedGoogle Scholar
  145. Silva VS, Shida CS, Rodrigues FB et al (2007) Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genom 8:474Google Scholar
  146. Silva Neto JF, Koide T, Gomes SL et al (2002) Site-directed gene disruption in Xylella fastidiosa. FEMS Microbiol Lett 210:105–110PubMedGoogle Scholar
  147. Simpson AJ, Reinach FC, Arruda P et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–159PubMedGoogle Scholar
  148. Stenger DC, Lee MW (2011) Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids. Appl Environ Microbiol 77:2522–2526PubMedCentralPubMedGoogle Scholar
  149. Stenger DC, Lee MW, Rogers EE et al (2010) Plasmids of Xylella fastidiosa mulberry-infecting strains share extensive sequence identity and gene complement with pVEIS01 from the earthworm symbiont Verminephrobacter eiseniae. Physiol Mol Plant Pathol 74:238–245Google Scholar
  150. Su CC, Chang CJ, Yang WJ et al (2012) Specific characters of 16 rRNA gene and 16S-23S rRNA internal transcribed spacer sequences of Xylella fastidiosa pear leaf scorch strains. Eur J Plant Pathol 132:203–216Google Scholar
  151. Su CC, Chang CJ, Chang CM et al (2013) Pierce’s disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. J Phytopathol 161:389–396Google Scholar
  152. Summer EJ, Enderle CJ, Ahern SJ et al (2010) Genomic and biological analysis of phage XFas53 and related prophages of Xylella fastidiosa. J Bacteriol 192:179–190PubMedCentralPubMedGoogle Scholar
  153. Sun Q, Greve LC, Labavitch JM (2011) Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines. Plant Physiol 155:1976–1987PubMedCentralPubMedGoogle Scholar
  154. Sun Q, Sun Y, Walker MA et al (2013) Vascular occlusions in grapevines with pierce’s disease make disease symptom development worse. Plant Physiol 161:1529–1541PubMedCentralPubMedGoogle Scholar
  155. Tarsi R, Pruzzo C (1999) Role of surface proteins in Vibrio cholerae attachment to chitin. Appl Environ Microbiol 65:1348–1351PubMedCentralPubMedGoogle Scholar
  156. Van der Auwera GA, Król JE, Suzuki H et al (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuw 96:193–204Google Scholar
  157. van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB (2003) Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185:1018–1026PubMedCentralPubMedGoogle Scholar
  158. Varani AM, Souza RC, Nakaya HI (2008) Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PloS One 3:e4059Google Scholar
  159. Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta)genomics. PloS Genet 6:e1000808PubMedCentralPubMedGoogle Scholar
  160. Voegel TM, Warren JG, Matsumoto A et al (2010) Localization and characterization of Xylella fastidiosa haemagglutinin adhesins. Microbiology 156:2172–2179PubMedGoogle Scholar
  161. Voegel TM, Doddapaneni H, Cheng DW et al (2013) Identification of a response regulator involved in surface attachment, cell–cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa. Mol Plant Pathol 14:256–264PubMedGoogle Scholar
  162. Wang LH, He YW, Gao YF et al (2004) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912PubMedGoogle Scholar
  163. Wang N, Li JL, Lindow SE (2012) RpfF-dependent regulon of Xylella fastidiosa. Phytopathology 102:1045–1053PubMedGoogle Scholar
  164. Wells JM, Raju BC, Hung HY et al (1987) Xylella fastidiosa gen. nov, sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas ssp. Int J Syst Bact 37:136–143Google Scholar
  165. Wilhelm M, Brodbeck BV, Andersen PC et al (2011) Analysis of xylem fluid components in almond cultivars differing in resistance to almond leaf scorch disease. Plant Dis 95:166–172Google Scholar
  166. White FF, Potnis N, Jones JB et al (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766PubMedGoogle Scholar
  167. Yen MR, Lin NT, Hung CH et al (2002) oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68:2924–2933PubMedCentralPubMedGoogle Scholar
  168. Yuan X, Morano L, Bromley R et al (2010) Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 100:601–611PubMedGoogle Scholar
  169. Zhang S, Flores-Cruz Z, Kumar D et al (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adam C. Retchless
    • 1
  • Fabien Labroussaa
    • 1
  • Lori Shapiro
    • 1
  • Drake C. Stenger
    • 2
  • Steven E. Lindow
    • 3
  • Rodrigo P. P. Almeida
    • 1
  1. 1.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.United States Department of Agriculture-Agricultural Research ServiceParlierUSA
  3. 3.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations