Physics of Ferroic and Multiferroic Domain Walls

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 198)


Ferroic materials are defined by having an order parameter that can be oriented in more than one direction. Within a ferroic material, then, there can be regions (domains) with different orientation of the order parameter: magnetic domains in ferromagnets, polar domains in ferroelectrics, twins in ferroelastics. Domain walls, or domain boundaries, are the separations between adjacent domains. In the last few years, domain walls have moved from being regarded as an inevitable by-product of the domains, to regions of interest in their own right, with unique electronic properties that may be used as the active ingredient in new electronic device paradigms, in what has been called “domain wall nanoelectronics”. The present book chapter outlines the basic physics of domain walls from their thickness and internal structure to their properties and dynamics. We will draw the connection between the fundamental properties and their experimental observation. The last section will discuss current unresolved challenges in this exciting and emerging field.


Domain Wall Strain Gradient Scanning Probe Microscope Piezoresponse Force Microscopy Magnetic Domain Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Landau, A.M. Lifthits, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. der Sow. 8, 153–169 (1935)Google Scholar
  2. 2.
    C. Kittel, Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946)CrossRefGoogle Scholar
  3. 3.
    T. Mitsui, J. Furuichi, Domain structure of rochelle salt and KH2PO4. Phys. Rev. 90, 193–202 (1953)CrossRefGoogle Scholar
  4. 4.
    A.L. Roitburd, Equilibrium structure of epitaxial layers. Phys. status solidi (a) 37, 329 (1976)Google Scholar
  5. 5.
    G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375, 122 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Choi, Y. Horibe, H.T. Yi, Y.J. Choi, W. Wu, S.-W. Cheong, Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mat. 9, 253 (2010)CrossRefGoogle Scholar
  8. 8.
    A.G. Khachaturyan, The Theory of Structural Transformations in Solids (Wiley, New York, 1983)Google Scholar
  9. 9.
    A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010)Google Scholar
  10. 10.
    A. Hubert, R. Schafer, Magnetic Domains (Springer, Berlin, 1998)Google Scholar
  11. 11.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Materials (Cambridge University Press, Cambridge, 1993)Google Scholar
  12. 12.
    G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)CrossRefGoogle Scholar
  13. 13.
    W.T. Lee, E.K.H. Salje, U. Bismayer, Influence of point defects on the distribution of twin wall widths. Phys. Rev. B 72, 104116 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)CrossRefGoogle Scholar
  15. 15.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190 (2008)CrossRefGoogle Scholar
  16. 16.
    D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309, 1688 (2005)CrossRefGoogle Scholar
  17. 17.
    A.Y. Borisevich, E.A. Eliseev, A.N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y.H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, S.V. Kalinin, Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775 (2012)Google Scholar
  18. 18.
    V.A. Zhirnov, Contribution to the theory of domain walls in ferroelectrics. Sov. Phys. JETP 35, 822 (1959)Google Scholar
  19. 19.
    A. Schilling, T.B. Adams, R.M. Bowman, J.M. Gregg, G. Catalan, J.F. Scott, Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006)Google Scholar
  20. 20.
    J. Chrosh, E.K.H. Salje, Temperature dependence of the domain wall width in LaAlO3. J. Appl. Phys. 85, 722 (1999)CrossRefGoogle Scholar
  21. 21.
    W. Kinase, H. Takahashi, On the 180° type domain wall of BaTiO3. J. Phys. Soc. Jpn. 12, 464 (1957)CrossRefGoogle Scholar
  22. 22.
    J. Padilla, W. Zhong, D. Vanderbilt, First-principles investigation of 180° domain walls in BaTiO3. Phys. Rev. B 53, R5969 (1996)CrossRefGoogle Scholar
  23. 23.
    L.A. Bursill, J.L. Peng, D. Feng, HREM study of [100] ferroelectric domain-walls in potassium niobate. Phil. Mag. A 48, 953 (1983)CrossRefGoogle Scholar
  24. 24.
    L.A. Bursill, J.L. Peng, Electron microscopic studies of ferroelectric crystals. Ferroelectrics 70, 191 (1986)Google Scholar
  25. 25.
    N. Floquet, C.M. Valot, M.T. Mesnier, J.C. Niepce, L. Normand, A. Thorel, R. Kilaas, Ferroelectric domain walls in BaTiO3: fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Physique III 7, 1105 (1997)CrossRefGoogle Scholar
  26. 26.
    M. Foeth, A. Sfera, P. Stadelmann, P.-A. Buffat, A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls. J. Electron Microsc. 48(6), 717–723 (1999)CrossRefGoogle Scholar
  27. 27.
    C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Shilo, G. Ravichandran, K. Bhattacharya, Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mat. 3, 453–457 (2004)CrossRefGoogle Scholar
  29. 29.
    W.T. Lee, E.K.H. Salje, Chemical turnstile. Appl. Phys. Lett. 87, 143110 (2005)CrossRefGoogle Scholar
  30. 30.
    M.Y. Gureev, A.K. Tagantsev, N. Setter, Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B 83, 184104 (2011)Google Scholar
  31. 31.
    M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Fousek, V. Janovec, The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135 (1969)CrossRefGoogle Scholar
  33. 33.
    J. Fousek, Permissible domain walls in ferroelectric species. Czech J. Phys. 9, 955 (1971)CrossRefGoogle Scholar
  34. 34.
    P. Marton, I. Rychetsky, J. Hlinka, Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model. Phys. Rev. B 81, 144125 (2010)CrossRefGoogle Scholar
  35. 35.
    A. Lubk, S. Gemming, N.A. Spaldin, First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009)CrossRefGoogle Scholar
  36. 36.
    O. Diéguez, P. Aguado-Puente, J. Junquera, J. Íñiguez, Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Privratska, V. Janovec, Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 204, 321 (1997)CrossRefGoogle Scholar
  38. 38.
    J. Privratska, V. Janovec, Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: symmetry predictions. Ferroelectrics 222, 23 (1999)CrossRefGoogle Scholar
  39. 39.
    J. Privratska, Possible appearance of spontaneous polarization and/or magnetization in domain walls associated with non-magnetic and non-ferroelectric domain pairs. Ferroelectrics 353, 116 (2007)CrossRefGoogle Scholar
  40. 40.
    P. Marton, I. Rychetsky, J. Hlinka, Phys. Rev. B 84, 139906(E) (2011)Google Scholar
  41. 41.
    J. Lajzerowicz, J.J. Niez, Phase transition in a domain wall. Journal de Physique Lettres 40, L165 (1979)CrossRefGoogle Scholar
  42. 42.
    V. Stepkova, P. Marton, J. Hlinka, Stress-induced phase transition in ferroelectric domain walls of BaTiO3. J. Phys.: Cond. Matter 24, 212201 (2012)Google Scholar
  43. 43.
    G. Catalan, On the link between octahedral rotations and conductivity in the domain walls of BiFeO3. Ferroelectrics 433, 65–73 (2012)CrossRefGoogle Scholar
  44. 44.
    A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Cond. Mat. 10, L377 (1998)CrossRefGoogle Scholar
  45. 45.
    L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003)CrossRefGoogle Scholar
  46. 46.
    N. Domingo, J. Narvaez, M. Alexe, G. Catalan, Local properties of the surface layer(s) of BiFeO3 single crystals. J. Appl. Phys. 113, 187220 (2013)Google Scholar
  47. 47.
    D.A. Huse, C.L. Henley, D.S. Fisher, Huse, Henley, and Fisher respond. Phys. Rev. Lett. 55, 2924 (1985)Google Scholar
  48. 48.
    M. Kardar, D.R. Nelson, Commensurate-incommensurate transitions with quenched random impurities. Phys. Rev. Lett. 55, 1157 (1985)Google Scholar
  49. 49.
    S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, P. Le Doussal, Domain wall creep in an ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849–852 (1998)CrossRefGoogle Scholar
  50. 50.
    T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)CrossRefGoogle Scholar
  51. 51.
    D.S. Fisher, Interface fluctuations in disordered systems: 5-ε expansion and failure of dimensional reduction. Phys. Rev. Lett. 56, 1964 (1986)Google Scholar
  52. 52.
    P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall roughness in epitaxial ferroelectric PbZr0:2Ti0:8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005)CrossRefGoogle Scholar
  53. 53.
    Li Yin-Yuan, Domain walls in antiferromagnets and the weak ferromagnetism of α-Fe2O3. Phys. Rev. 101, 1450 (1956)CrossRefGoogle Scholar
  54. 54.
    V. Janovec, L. Richterová, J. Privratska, Polar properties of compatible ferroelastic domain walls. Ferroelectrics 222, 331 (1999)CrossRefGoogle Scholar
  55. 55.
    L. Gonçalves-Ferreira, S.A.T. Redfern, E. Artacho, E.K.H. Salje, Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101, 097602 (2008)CrossRefGoogle Scholar
  56. 56.
    A.K. Tagantsev, E. Courtens, L. Arzel, Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, 224107 (2001)CrossRefGoogle Scholar
  57. 57.
    P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)CrossRefGoogle Scholar
  58. 58.
    S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, E.K.H. Salje, Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523 (2012)CrossRefGoogle Scholar
  59. 59.
    A.V. Goltsev, R.V. Pisarev, Th. Lottermoser, M. Fiebig, Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003)Google Scholar
  60. 60.
    C.J.M. Daumont, S. Venkatesan, B.J. Kooi, J.Th.M. De Hosson, B. Noheda, Domain wall magnetism in thin films of orthorhombic manganites. arXiv:1008.0315v3 (2010)Google Scholar
  61. 61.
    H. Béa, M. Bibes, F. Ott, B. Dupé, X.-H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, A. Barthélémy, Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008)CrossRefGoogle Scholar
  62. 62.
    Y. Geng, N. Lee, Y.J. Choi, S.-W. Cheong, W. Wu, Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055 (2012)Google Scholar
  63. 63.
    A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, E.P. Nikolaeva, A.P. Pyatakov, A.K. Zvezdin, Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl. Phys. Lett. 93, 182510 (2008)CrossRefGoogle Scholar
  64. 64.
    B. Houchmandzadeh, J. Lajzerowicz, E.K.H. Salje, Order parameter coupling and chirality of domain walls. J. Phys.: Condens. Matter 3, 5163 (1991)Google Scholar
  65. 65.
    J. Hlinka, P. Ondrejkovic, P. Marton, The piezoelectric response of nanotwinned BaTiO3. Nanotechnology 20, 105709 (2009)CrossRefGoogle Scholar
  66. 66.
    S. Wada, K. Yako, K. Yokoo, H. Kakemoto, T. Tsurumi, Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334, 17 (2006)CrossRefGoogle Scholar
  67. 67.
    A. Fouskova, The increase in permittivity of ferroelectrics as a consequence of the polarization reversal process. Part II. Theory. J. Phys. Soc. Jpn. 20, 1625–1632 (1965)CrossRefGoogle Scholar
  68. 68.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, β phase and γ-β metal-insulator transition of multiferroic bismuth ferrite. Phys. Rev. B 77, 014110 (2008)CrossRefGoogle Scholar
  69. 69.
    V. Gopalan, V. Dierolf, D.A. Scrymgeour, defect–domainwall interactions in trigonal ferroelectrics. Ann. Rev. Mater. Res. 37, 449–489 (2007)CrossRefGoogle Scholar
  70. 70.
    Y. Xiao, V.B. Shenoy, K. Bhattacharya, Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95, 247603 (2005)CrossRefGoogle Scholar
  71. 71.
    P. Zubko, Private Communication (2013)Google Scholar
  72. 72.
    E.A. Eliseev, A.N. Morozovska, G.S. Svechnikov, V. Gopalan, V.Ya. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011)Google Scholar
  73. 73.
    D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N.A. Spaldin, R. Ramesh, M. Fiebig, Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)CrossRefGoogle Scholar
  74. 74.
    S. Farokhipoor, B. Noheda, Conduction through 71º domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)CrossRefGoogle Scholar
  75. 75.
    Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L.W. Martin, Y.-H. Chu, J.F. Scott, R. Ramesh, Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)CrossRefGoogle Scholar
  76. 76.
    N. Bassiri-Gharb, I. Fujii, E. Hong, S. Trolier-McKinstry, D.V. Taylor, D. Damjanovic, Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 47 (2007)Google Scholar
  77. 77.
    A. Pakhomov, I. Luk’yanchuk, A. Sidorkin, Frequency dependence of the dielectric permittivity in ferroelectric thin films with 180° domain structure. Ferroelectrics, 444, 177–182 (2013)Google Scholar
  78. 78.
    V. Skumryev, V. Laukhin, I. Fina, X. Marti, F. Sanchez, M. Gospodinov, J. Fontcuberta, Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011)CrossRefGoogle Scholar
  79. 79.
    C.T. Nelson et al., Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011)CrossRefGoogle Scholar
  80. 80.
    A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, J.S. Cross, Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005)CrossRefGoogle Scholar
  81. 81.
    A. Gruverman, D. Wu, J.F. Scott, Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008)CrossRefGoogle Scholar
  82. 82.
    H. Lu, C.-W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012)Google Scholar
  83. 83.
    M. Bartels, V. Hagen, M. Burianek, M. Getzlaff, U. Bismayer, R. Wiesendanger, Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys.: Condens. Matter 15, 957–962 (2003)Google Scholar
  84. 84.
    P. Zubko, G. Catalan, A.K. Tagantsev, Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (in press, 2013). doi: 10.1146/annurev-matsci-071312-121634

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.ICN2-Institut Català de Nanociència i NanotecnologiaCampus UABBarcelonaSpain
  2. 2.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations