Mesoscopic Phenomena in Multifunctional Materials pp 23-56

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 198) | Cite as

Nanoscale Phase Transformations in Functional Materials

Chapter

Abstract

The in-depth knowledge of the complex mechanisms of phase transformations of nanoscale functional materials is a prerequisite for controlling their properties. With a special emphasis on ferroic systems, the present chapter gives a review on phase transformations of various nanostructured functional materials. The review includes their size dependent properties, as well as corresponding physical concepts of nonextensive nanothermodynamics, phase fluctuations, critical temperatures, scaling laws, transition pathways, and domain formation.

References

  1. 1.
    H.S. Nalwa (ed.), Encyclopedia of Nanoscience and Nanotechnology (American Scientific, New York, 2004)Google Scholar
  2. 2.
    G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (RCR Press, Boca Raton, 2008)Google Scholar
  3. 3.
    D. Vollath, Nanomaterials (Wiley-VCH, Weinheim, 2008)Google Scholar
  4. 4.
    G. Wilde (ed.), Nanostructured Materials (Elsevier, Amsterdam, 2009)Google Scholar
  5. 5.
    L. Christodoulou, J.D. Venables, JOM 55, 39 (2003)Google Scholar
  6. 6.
    K. Salonitis, J. Pandremenos, J. Paralikas, G. Chryssolouris, Int. J. Adv. Manuf. Technol. 49, 803 (2010)Google Scholar
  7. 7.
    R.F. Gibson, Compos. Struct. 92, 2793 (2010)Google Scholar
  8. 8.
    A.C. Balazs, T. Emrick, T.P. Russell, Science 314, 1107 (2006)Google Scholar
  9. 9.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)Google Scholar
  10. 10.
    C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Chem. Soc. Rev. 40, 44 (2011)Google Scholar
  11. 11.
    D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Science 304, 1651 (2004)Google Scholar
  12. 12.
    L.W. Martin, S.P. Crane, Y.-H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh. J. Phys. Condens. Matter. 20, 434220 (2008) (13 pp)Google Scholar
  13. 13.
    D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36, 770 (2007)Google Scholar
  14. 14.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)Google Scholar
  15. 15.
    K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)Google Scholar
  16. 16.
    M. Bibes, Nature Mater. 11, 354 (2012)Google Scholar
  17. 17.
    W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed. (Wiley, New York, 2009) Google Scholar
  18. 18.
    G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119 (2012)Google Scholar
  19. 19.
    A. Aird, E.K.H. Salje, J. Phys. Condens. Matter. 10, L377 (1988)Google Scholar
  20. 20.
    Y. Kim, M. Alexe, E.K.H. Salje, Appl. Phys. Lett. 96, 032904 (2010)Google Scholar
  21. 21.
    J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 8, 229 (2009)Google Scholar
  22. 22.
    P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007)Google Scholar
  23. 23.
    M. Wautelet, Eur. J. Phys. 22, 601 (2001)Google Scholar
  24. 24.
    E. Arzt, Acta Mater. 46, 5611 (1998)Google Scholar
  25. 25.
    C.S. Pande, K.P. Cooper, Progr. Mater. Sci. 54, 689 (2009)Google Scholar
  26. 26.
    J.R. Greer, JThM De Hosson, Progr. Mater. Sci. 56, 654 (2011)Google Scholar
  27. 27.
    S. Bedanta, W. Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009)Google Scholar
  28. 28.
    O. Fruchart, A. Thiaville, C. R. Phys. 6, 921 (2005)Google Scholar
  29. 29.
    G.C. Papaefthymiou, Nano Today 4, 438 (2009)Google Scholar
  30. 30.
    J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Phys. Rep. 422, 65 (2005)Google Scholar
  31. 31.
    A.P. Alivisatos, Science 271, 933 (1996)Google Scholar
  32. 32.
    D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010)Google Scholar
  33. 33.
    T. Trindade, P. O’Brien, N.L. Pickett, Chem. Mater. 13, 3843 (2001)Google Scholar
  34. 34.
    T.J. Bukowski, J.H. Simmons, Crit. Rev. Solid State Mater. Sci. 27, 119 (2002)Google Scholar
  35. 35.
    A.J. Nozik, Nano Lett. 10, 2735 (2010)Google Scholar
  36. 36.
    T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn. Magn. Mater. 293, 483 (2005)Google Scholar
  37. 37.
    M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, ACS Nano 2, 889 (2008)Google Scholar
  38. 38.
    R.D. Schaller, V.M. Agranovich, V.I. Klimov, Nat. Phys. 1, 189 (2005)Google Scholar
  39. 39.
    R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov, Nano Lett. 6, 424 (2006)Google Scholar
  40. 40.
    A.J. Nozik, Chem. Phys. Lett. 457, 3 (2008)Google Scholar
  41. 41.
    W. Lee, N.P. Dasgupta, H.J. Jung, J.R. Lee, R. Sinclair, F.B. Prinz, Nanotechnology 21, 485402 (2010)Google Scholar
  42. 42.
    L.-S. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett. 1, 349 (2001)Google Scholar
  43. 43.
    J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004)Google Scholar
  44. 44.
    A.M. Smith, S. Nie, Acc. Chem. Res. 16, 190 (2010)Google Scholar
  45. 45.
    Q. Jiang, C.C. Yang, Curr. Nanosci. 4, 179 (2008)Google Scholar
  46. 46.
    Ph. Buffat, J.-P. Borel, Phys. Rev. A 13, 2287 (1976)Google Scholar
  47. 47.
    J. Eckert, J.C. Holzer, C.C. Ahn, Z. Fu, W.L. Johnson, Nanostr. Mater. 2, 407–413 (1993)Google Scholar
  48. 48.
    P. Palanisamy, J.M. Howe, J. Appl. Phys. 110, 024908 (2011)Google Scholar
  49. 49.
    A. Moros, H. Rösner, G. Wilde, Scr. Mater. 65, 883 (2011)Google Scholar
  50. 50.
    T. Bachels, H.-J. Güntherodt, R. Schäfer, Phys. Rev. Lett. 85, 1250 (2000)Google Scholar
  51. 51.
    K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, J. Am. Chem. Soc. 124, 2312 (2002)Google Scholar
  52. 52.
    A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Science 256, 1425 (1992)Google Scholar
  53. 53.
    J.-G. Lee, H. Mori, H. Yasuda, J. Mater. Res. 20, 1708 (2005)Google Scholar
  54. 54.
    C.L. Chen, J.-G. Lee, K. Arakawa, H. Mori, Appl. Phys. Lett. 98, 083108 (2011)Google Scholar
  55. 55.
    N. Braidy, G.R. Purdy, G.A. Botton, Acta Mater. 56, 5972 (2008)Google Scholar
  56. 56.
    G. Wilde, P. Bunzel, H. Rösner, J. Weissmüller, J. Alloys Comp. 434–435, 286 (2007)Google Scholar
  57. 57.
    C.Q. Sun, W.H. Zhong, S. Li, B.K. Tay, H.L. Bai, E.Y. Jiang, J. Phys. Chem. B 108, 1080 (2004)Google Scholar
  58. 58.
    F.D. Fischer, T. Waitz, D. Vollath, N.K. Simha, Progr. Mater. Sci. 53, 481 (2008)Google Scholar
  59. 59.
    M. Turmine, A. Mayaffre, P. Letellier, J. Phys. Chem. B 108, 18980 (2004)Google Scholar
  60. 60.
    P. Letellier, A.Mayaffre, M. Turmine, J. Phys. Condens. Matter 19, 436229 (9pp) (2007)Google Scholar
  61. 61.
    T.L. Hill, in Thermodynamics of Small Systems, Part I, II, in series: Frontiers in Chemistry (W.A. Benjamin, New York, 1963–1964); T.L. Hill, Thermodynamics of Small Systems (Dover Publications Inc., Mineola, 2002)Google Scholar
  62. 62.
    T.L. Hill, Nano Lett. 1, 273 (2001)Google Scholar
  63. 63.
    J. Gieseler, R. Quidant, C. Dellago, L. Novotny, Nature Nanotechnology 9, 358 (2013)Google Scholar
  64. 64.
    P. Pawlow, Z. Phys, Chem. 65, 545 (1909)Google Scholar
  65. 65.
    C.Q. Sun, Progr. Mater. Sci. 54, 1 (2009)Google Scholar
  66. 66.
    C.Q. Sun, Progr. Solid State Chem. 35, 179 (2007)Google Scholar
  67. 67.
    F. Shi, J. Mater. Res. 9, 1307 (1994)Google Scholar
  68. 68.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)Google Scholar
  69. 69.
    M. Zhao, Q. Jiang, Key Eng. Mater. 444, 189 (2010)Google Scholar
  70. 70.
    C.C. Yang, Y.-W. Mai, J. Phys. Chem. C 117, 2421 (2013)Google Scholar
  71. 71.
    W.H. Qui, Phys. B 368, 46 (2005)Google Scholar
  72. 72.
    D. Vollath, Int. J. Mater. Res. 103, 278 (2012)Google Scholar
  73. 73.
    G. Guisbiers, M. Wautelet, Nanotechnology 17, 2008 (2006)Google Scholar
  74. 74.
    S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Phys. Chem. Chem. Phys. 13, 10652 (2011)Google Scholar
  75. 75.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth Heinemann, Oxford, 2000)Google Scholar
  76. 76.
    P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996)Google Scholar
  77. 77.
    A. Tröster, M. Oettel, B. Block, P. Virnau, K. Binder, J. Chem. Phys. 136, 064709 (2012)Google Scholar
  78. 78.
    R.C. Tolman, J. Chem. Phys. 17, 333 (1949)Google Scholar
  79. 79.
    A. Tröster, K. Binder, Phys. Rev. Lett. 107, 265701 (2011)Google Scholar
  80. 80.
    R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)Google Scholar
  81. 81.
    S.H. Tolbert, A.P. Alivisatos, Science 265, 373 (1994)Google Scholar
  82. 82.
    A.S. Shirinyan, M. Wautelet, Nanotechnology 15, 1720 (2004)Google Scholar
  83. 83.
    A.S. Shirinyan, A.M. Gusak, M. Wautelet, Acta Mater. 53, 5025 (2005)Google Scholar
  84. 84.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 847 (2008)Google Scholar
  85. 85.
    G. Garzel, J. Janczak-Rusch, L. Zabdyr, CALPHAD 36, 52 (2012)Google Scholar
  86. 86.
    G. Abudukelimu, G. Guisbiers, M. Wautelet, J. Mater. Res. 21, 2829 (2006)Google Scholar
  87. 87.
    J. Pohl, C. Stahl, K. Albe, Beilstein J. Nanotechnol. 3, 1 (2012)Google Scholar
  88. 88.
    Z. Wang, Q. Guo, J. Phys. Chem. 113, 4286 (2009)Google Scholar
  89. 89.
    T. Tanaka, Mater. Sci. Forum 653, 55 (2010)Google Scholar
  90. 90.
    S. Divinski, H. Rösner, G. Wilde, in Nanostructured Materials ed. by G. Wilde (Elsevier, Amsterdam, 2009), p. 1Google Scholar
  91. 91.
    R. Cerf, The Wulff Crystal in Ising and Percolation Models, LNM 1878 (Springer, Berlin, 2006)Google Scholar
  92. 92.
    M. Fujimoto, J. Phys. A Math. Gen. 30, 3779 (1997)Google Scholar
  93. 93.
    D. Vollath, F.D. Fischer, Progr. Mater. Sci. 56, 1030 (2011)Google Scholar
  94. 94.
    D. Vollath, F.D. Fischer, J. Nanopart. Res. 11, 433 (2009)Google Scholar
  95. 95.
    D. Vollath, F.D. Fischer, J. Nanopart. Res. 11, 647 (2009)Google Scholar
  96. 96.
    X.Y. Lang, W.T. Zheng, Q. Jiang, Phys. Rev. B 73, 224444 (2006)Google Scholar
  97. 97.
    M.E. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)Google Scholar
  98. 98.
    R. Zhang, R.F. Willis, Phys. Rev. Lett. 86, 2665 (2001)Google Scholar
  99. 99.
    Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, H. Hori, Phys. Rev. Lett. 93, 116801 (2004)Google Scholar
  100. 100.
    X. Teng, M. Feygenson, Q. Wang, J. He, W. Du, A.I. Frenkel, W. Han, M. Aronson, Nano Lett. 9, 3177–3184 (2009)Google Scholar
  101. 101.
    S. Trudel, Gold Bull. 44, 3 (2011)Google Scholar
  102. 102.
    S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, L.E. Cross, Phys. Lett. A 212, 341 (1996)Google Scholar
  103. 103.
    Y.G. Wang, W.L. Zhong, P.L. Zhang, Phys. Rev. B 53, 11439 (1996)Google Scholar
  104. 104.
    O. Hudak, Ferroelectrics 375, 92 (2008)Google Scholar
  105. 105.
    X.Y. Lang, Q. Jiang, J. Nanopart. Res. 9, 595–603 (2007)Google Scholar
  106. 106.
    A. Rüdiger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, R. Waser, Appl. Phys. A 80, 1247 (2005)Google Scholar
  107. 107.
    S.K. Steiffer, D.D. Fong, MRS Bull. 34, 832 (2009)Google Scholar
  108. 108.
    C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez, Phys. Rev. Lett. 94, 047603 (2005)Google Scholar
  109. 109.
    B. Jiang, J.L. Peng, L.A. Bursill, W.L. Zhong, J. Appl. Phys. 87, 3462 (2000)Google Scholar
  110. 110.
    J.F. Scott, Science 315, 954 (2007)Google Scholar
  111. 111.
    L.W. Martin, S.P. Crane, Y-H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C-H. Yang, N. Balke, R. Ramesh. J. Phys.: Condens. Matter 20, 434220 (2008)Google Scholar
  112. 112.
    C.H. Ahn, K.M. Rabe, J.-M. Triscone, Science 303, 488 (2004)Google Scholar
  113. 113.
    A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Yudin, A. Zlatkin, Nature 391, 874 (1998)Google Scholar
  114. 114.
    J. Junquera, P. Ghosez, Nature 422, 506 (2003)Google Scholar
  115. 115.
    I.I. Naumov, L. Bellaiche, H. Fu, Nature 432, 737 (2004)Google Scholar
  116. 116.
    M.J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C.F. Kisielowski, V.V. Volkov, Y. Zhu, G. Caruntu, A.P. Alivisatos, R. Ramesh, Nat. Mater. 11, 700 (2012)Google Scholar
  117. 117.
    K. Otsuka, C.M. Wayman (eds.), Shape Memory Materials (Cambridge University Press, Cambridge, 1998)Google Scholar
  118. 118.
    K. Bhattacharya, Microstructure of Martensite (Oxford University Press, New York, 2003)Google Scholar
  119. 119.
    D.C. Lagoudas (ed.), Shape Memory Alloys (Springer, Berlin, 2008)Google Scholar
  120. 120.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Apply. Phys. Lett. 69, 1966 (1996)Google Scholar
  121. 121.
    A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1476 (2002)Google Scholar
  122. 122.
    A. Planes, L. Mañosa, M. Acet, J. Phys. Condens. Matter 21, 233201 (2009)Google Scholar
  123. 123.
    C. Wen, B. Huang, Z. Chen, Y. Rong, Mater. Sci. Eng. A438–440, 420 (2006)Google Scholar
  124. 124.
    O. Kitakami, H. Sato, Y. Shimada, Phys. Rev. B 56, 13849 (1997)Google Scholar
  125. 125.
    Y. Rong, Q. Meng, Y. Zhang, T.Y. Hsu, Mater. Sci. Eng. A438–440, 414 (2006)Google Scholar
  126. 126.
    C. Frommen, G. Wilde, H. Rösner, J. Alloys Comp. 377, 232 (2004)Google Scholar
  127. 127.
    T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52, 137 (2004)Google Scholar
  128. 128.
    H. Wang, Q. Liu, J. Zhang, T.Y. Hsu, Nanotechnology 14, 696 (2003)Google Scholar
  129. 129.
    K. Asaka, E. Kitahata, Y. Hirotsu, K. Kifune, Y. Kubota, T. Tadaki, Scripta Mater. 44, 2043 (2001)Google Scholar
  130. 130.
    M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, B.M. Tissue, J. Am. Ceram. Soc. 88, 160 (2005)Google Scholar
  131. 131.
    M.J. Mayo, A. Suresh, W.D. Porter, Rev. Adv. Mater. Sci. 5, 203 (2003)Google Scholar
  132. 132.
    F.A. Eiserling, in Bacteriophage T4, ed. by C.K. Mathews (American Society of Microbiology, Washington, 1983). p. 11Google Scholar
  133. 133.
    W. Falk, R.D. James, Phys. Rev. E 73, 011917 (2006)Google Scholar
  134. 134.
    T. Tadaki, K. Kifune, Y. Kubota, H. Yamaoka, Mater. Sci. Eng. A 438–440, 407 (2006)Google Scholar
  135. 135.
    S. Kajiwara, S. Ohno, K. Honma, Phil. Mag. 63, 625 (1991)Google Scholar
  136. 136.
    T. Waitz, H.P. Karnthaler, Acta Mater. 52, 5461 (2004)Google Scholar
  137. 137.
    A.M. Glezer, E.N. Blinova, V.A. Pozdnyakov, A.V. Shelyakov, J. Nanoparticle Res. 5, 551 (2003)Google Scholar
  138. 138.
    M. Lin, G.B. Olson, M. Cohen, Acta Metall. 41, 253 (1993)Google Scholar
  139. 139.
    A.G. Evans, N. Burlingame, M. Drory, W.M. Kriven, Acta Metall. 29, 447 (1981)Google Scholar
  140. 140.
    T. Waitz, D. Spišák, J. Hafner, H.P. Karnthaler, Europhys. Lett. 71, 98 (2005)Google Scholar
  141. 141.
    Y. Tong, Y. Liu, J. Miao, L. Zhao, Scripta Mater. 52, 983 (2005)Google Scholar
  142. 142.
    Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, W.I. Milne, Thin Sol. Films 515, 80 (2006)Google Scholar
  143. 143.
    D. Wan, K. Komovopoulos, J. Mater. Res. 20, 1606 (2005)Google Scholar
  144. 144.
    J. Buschbeck, R. Niemann, O. Heczko, M. Thomas, L. Schultz, S. Fähler, Acta Mater. 57, 2516 (2009)Google Scholar
  145. 145.
    R. Zarnetta, E. Zelaya, G. Eggeler, A. Ludwig, Scripta Mater. 60, 352 (2009)Google Scholar
  146. 146.
    P.H. Sung, C.-D. Wu, T.-H. Fang, C.-I Wenig. Appl. Surf. Sci. 258, 7064 (2012)Google Scholar
  147. 147.
    C.P. Frick, S. Orso, E. Arzt, Acta Mater. 55, 3845 (2007)Google Scholar
  148. 148.
    J.M. San Juan, M.L. Nó, C.A. Schuh, Adv. Mater. 20, 272 (2008)Google Scholar
  149. 149.
    J.M. San Juan, M.L. Nó, C.A. Schuh, Nat. Nanotech. 4, 415 (2009)Google Scholar
  150. 150.
    N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, H.E. Karaca, Acta Mater. 60, 5670 (2012)Google Scholar
  151. 151.
    Y. Zhong, K. Gall, T. Zhu, Acta Mater. 60, 6301 (2012)Google Scholar
  152. 152.
    S. Hao, L. Cui, D. Jiang, Y. Wang, X. Shi, J. Jiang, D.E. Brown, Y. Ren, Appl. Phys. Lett. 101, 173115 (2012)Google Scholar
  153. 153.
    Z. Zhang, X. Ding, J. Deng, J. Cui, J. Sun, T. Suzuki, K. Otsuka, X. Ren, J. Phys. Chem. C 117, 7895 (2013)Google Scholar
  154. 154.
    S. Li, W.T. Zheng, Q. Jiang, Scripta Mater. 54, 2091 (2006)Google Scholar
  155. 155.
    K. Seki, H. Kura, T. Sato, T. Taniyama, J. Appl. Phys. 103, 063910 (2008)Google Scholar
  156. 156.
    H.S. Yang, H.K.D.H. Bhadeshia, Scripta Mater. 60, 493 (2009)Google Scholar
  157. 157.
    D.M. Liu, Z.H. Nie, Y.D. Wang, Y.D. Liu, G. Wang, Y. Ren, L. Zuo, Metal Mater. Trans. 39A, 466 (2008)Google Scholar
  158. 158.
    T. Waitz, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Techn. 24, 934 (2008)Google Scholar
  159. 159.
    M. Peterlechner, T. Waitz, C. Gammer, T. Antretter, Int. J. Mat. Res. 102, 634 (2011)Google Scholar
  160. 160.
    W. Qin, Z.H. Chen, J. Alloys Comp. 322, 286 (2001)Google Scholar
  161. 161.
    Q. Meng, N. Zhou, Y. Rong, S. Chen, T.Y. Hsu, Acta Mater. 50, 4563 (2002)Google Scholar
  162. 162.
    K. Asaka, T. Tadaki, Y. Hirotsu, Phil. Mag. A 82, 463 (2002)Google Scholar
  163. 163.
    T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, H.P. Karnthaler, J. Mech. Phys. Sol. 55, 419 (2007)Google Scholar
  164. 164.
    T. Lookman, P. Littlewood, MRS Bull. 34, 822 (2009)Google Scholar
  165. 165.
    M. Porta, T. Castan, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Phys. Rev. B 79, 214117 (2009)Google Scholar
  166. 166.
    R.E. Cech, D. Turnbull, Trans. AIME 206, 124 (1956)Google Scholar
  167. 167.
    I.W. Chen, Y.H. Chiao, Acta Metall. 33, 1847 (1985)Google Scholar
  168. 168.
    V.A. Pozdnyakov, Bull. Russ. Acad. Sci. 69, 1435 (2005)Google Scholar
  169. 169.
    M. Cohen, Mater. Trans., JIM 33, 178 (1992)Google Scholar
  170. 170.
    C.P. Frick, T.W. Lang, K. Spark, K. Gall, Acta Mater. 54, 2223 (2006)Google Scholar
  171. 171.
    A. Amini, C. Cheng, M. Naebe, J.S. Church, N. Hameed, A. Asgari, F. Will, Nanoscale 5, 6479 (2013)Google Scholar
  172. 172.
    Z.Q. Li, Q.P. Sun, Int. J. Plast. 18, 1481 (2002)Google Scholar
  173. 173.
    P. Feng, Q.P. Sun, J. Mech. Phys. Sol. 54, 1568 (2006)Google Scholar
  174. 174.
    S.C. Mao, X.D. Han, Z. Zhang, M.H. Wu, J. Appl. Phys. 101, 103522 (2007)Google Scholar
  175. 175.
    S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, V. Demers, IYu. Khmelevskaya, S.V. Dobatkin, E.V. Tatyanin, Mater. Sci. Eng. A481–482, 114 (2008)Google Scholar
  176. 176.
    R. Delville1, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Acta Mater. 13, 4503 (2010)Google Scholar
  177. 177.
    J. Frenzel, J.A. Burow, E.J. Payton, S. Rezanka, G. Eggeler, Adv. Eng. Mater. 13, 256 (2011)Google Scholar
  178. 178.
    J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Acta Mater. 8, 490 (2010)Google Scholar
  179. 179.
    R.Z. Valiev, Nat. Mater. 3, 511 (2004)Google Scholar
  180. 180.
    B. Kockar, I. Karaman, J.I. Kim, Y.I. Chumlyakov, J. Sharp, C.J. Yu, Acta Mater. 56, 3630 (2008)Google Scholar
  181. 181.
    V. Demers, V. Brailovski, S.D. Prokoshkin, K.E. Inaekyan, Mater. Sci. Eng. A513–514, 185 (2009)Google Scholar
  182. 182.
    Q.P. Sun, Y.J. He, Int. J. Solids Struc. 45, 3868 (2008)Google Scholar
  183. 183.
    K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Scripta Mater. 60, 749 (2009)Google Scholar
  184. 184.
    A. Ahadi, Q.P. Sun, Appl. Phys. Lett. 103, 021902 (2013)Google Scholar
  185. 185.
    D. König, P.J.S. Buenconsejo, D. Grochla, S. Hamann, J. Pfetzing-Micklich, A. Ludwig, Acta Mater. 60, 306 (2012)Google Scholar
  186. 186.
    Z. Zhang, X. Ding, J. Sun, T. Suzuki, T. Lookman, K. Otsuka, X. Ren, Phys. Rev. Lett. 111, 145701 (2013)Google Scholar
  187. 187.
    Y. Chen, C.A. Schuh, Acta Mater. 59, 537 (2011)Google Scholar
  188. 188.
    M. Frotscher, S. Wu, T. Simon, C. Somsen, A. Dlouhy, G. Eggeler, Adv. Eng. Mater. 13, B181 (2011)Google Scholar
  189. 189.
    R.N. Imashev, K.Y. Mulyukov, V.V. Koledov, V.G. Shavrov, J. Phys. Condens. Matter 17, 2129 (2005)Google Scholar
  190. 190.
    R. Monzen, M. Mori, Phil Mag. Lett. 75, 351 (1997)Google Scholar
  191. 191.
    D. Gunderov, A. Lukyanov, E. Prokofiev, A. Kilmametov, V. Pushin, R.Z. Valiev, Mater. Sci. Eng. A503, 75 (2009)Google Scholar
  192. 192.
    J. Diao, K. Gall, M.L. Dunn, Nature Mater. 2, 656 (2003)Google Scholar
  193. 193.
    W. Liang, M. Zhou, Phil. Mag. 87, 2191 (2007)Google Scholar
  194. 194.
    H.S. Park, W. Cai, H.D. Espinosa, H. Huang, MRS Bull. 34, 187 (2009)Google Scholar
  195. 195.
    J. Lao, M.N. Tam, D. Pinisetty, N. Gupta, JOM 65, 675 (2013)Google Scholar
  196. 196.
    F. Chen, R.L. Johnston, Appl. Phys. Lett. 92, 023112 (2008)Google Scholar
  197. 197.
    K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, A.P. Alivisatos, Science 293, 1803 (2001)Google Scholar
  198. 198.
    C.-C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276, 398 (1997)Google Scholar
  199. 199.
    J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Acta Mater. 58, 490 (2010)Google Scholar
  200. 200.
    H. Zheng, Z. Luo, D. Fang, F.R. Phillips, D.C. Lagoudas, Mater. Lett. 70, 109 (2012)Google Scholar
  201. 201.
    A. Artemev, Y. Jin, A.G. Khachaturyan, Acta Mater. 49, 1165 (2001)Google Scholar
  202. 202.
    V.I. Levitas, Acta Mater. 61, 4305 (2013)Google Scholar
  203. 203.
    V.I. Levitas, M. Javanbakht, Phys. Rev. Lett. 105, 165701 (2010)Google Scholar
  204. 204.
    W.-F. Rao, A.G. Khachaturyan, Acta Mater. 59, 4494 (2011)Google Scholar
  205. 205.
    T. Ezaz, H. Sehitoglu, H.J. Maier, Acta Mater. 59, 5893 (2011)Google Scholar
  206. 206.
    J. Wang, H. Sehitoglu, Acta Mater. 61, 6790 (2013)Google Scholar
  207. 207.
    H. Zhang, J.F. Banfield, Nano Lett. 4, 713 (2004)Google Scholar
  208. 208.
    M.E. Gruner, G. Rollmann, A. Hucht, P. Entel, in Advance in Solid State Physics ed. by E. Haug, vol. 47 (Springer, Berlin, 2008), p. 117Google Scholar
  209. 209.
    M. Grünwald, C. Dellago, Nano Lett. 9, 2099 (2009)Google Scholar
  210. 210.
    M. Grünwald, C. Dellago, J. Chem. Phys. 131, 164116 (2009)Google Scholar
  211. 211.
    E.K.H. Salje, J. Lashley, Domain Boundary Engineering in Ferroic and Multiferroic Materials: A Simple Introduction, in Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148 (Springer, Berlin, 2011), pp. 1–18Google Scholar
  212. 212.
    J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C. Yang, J. Yang, Y. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010)Google Scholar
  213. 213.
    C.L. Jia, S.B. Mi, K. Urban, I. Verjouiu, M. Alexe, D. Hesse, Nat. Mater. 7, 57 (2008)Google Scholar
  214. 214.
    J. Fousek, V. Janovec, J. Appl. Phys. 40, 135 (1969)Google Scholar
  215. 215.
    V. Janovec, D.B. Litvin, L. Richterová, Ferroelectrics 157, 75 (1994)Google Scholar
  216. 216.
    V. Janovec, J. Privatská, Domain structures, in International Tables for Crystallography vol 449 (2006)Google Scholar
  217. 217.
    V.K. Wadhawan, Phase Trans. 3, 3 (1982)Google Scholar
  218. 218.
    J. Sapriel, Phys. Rev. B 12, 5128 (1975)Google Scholar
  219. 219.
    V. Janovec, Ferroelectrics 12, 43 (1976)Google Scholar
  220. 220.
    J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Nature Mater. 8, 229 (2009)Google Scholar
  221. 221.
    A. Aird, E.K.H. Salje, Condens. Matter 10, L377 (1998)Google Scholar
  222. 222.
    R. Niemann, U.K. Rößler, M.E. Gruner, O. Heczko, L. Schultz, S. Fähler, Adv. Eng. Mater. 14, 562 (2012)Google Scholar
  223. 223.
    C. Kittel, Phys. Rev. 70, 965 (1946)Google Scholar
  224. 224.
    A.S. Sonin, B.A. Strukov, Einführung in die Ferroelektrizität (Akademie-Verlag, Berlin, 1974)Google Scholar
  225. 225.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge University Press, Cambridge, 1990)Google Scholar
  226. 226.
    I.A. Lukyanchuk, A. Schilling, J.M. Gregg, G. Catalan, J.F. Scott, Phys. Rev. B 79(7), 144111 (2009)Google Scholar
  227. 227.
    G. Catalan, I. Lukyanchuk, A. Schilling, J.M. Gregg, J.F. Scott, J. Mater. Sci. 44, 5307 (2009)Google Scholar
  228. 228.
    A.L. Roytburd, J. Appl. Phys. 83, 228 (1998)Google Scholar
  229. 229.
    A.L. Roytburd, J. Appl. Phys. 83, 239 (1998)Google Scholar
  230. 230.
    A. Schilling, T.B. Adams, R.M. Bowman, J.M. Gregg, G. Catalan, J.F. Scott, Phys. Rev. B 74, 024115 (2006)Google Scholar
  231. 231.
    J. Torrés, C. Roucau, R. Ayroles, Phys. Stat. Sol. A 70, 193 (1982)Google Scholar
  232. 232.
    W. Schranz, Phys. Rev. B 83, 094120 (2011)Google Scholar
  233. 233.
    A.V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E.K.H. Salje, J.F. Scott, Phys. Rev. B 61, 946 (2000)Google Scholar
  234. 234.
    W. Schranz, A. Tröster, A.V. Kityk, P. Sondergeld, E.K.H. Salje, Europhys. Lett. 62, 512 (2003)Google Scholar
  235. 235.
    W. Schranz, P. Sondergeld, A.V. Kityk, E.K.H. Salje, Phys. Rev. B 80, 094110 (2009)Google Scholar
  236. 236.
    Z. Zhang, J. Koppensteiner, W. Schranz, M.A. Carpenter, J. Phys. Condens. Matter 22, 295401 (2010)Google Scholar
  237. 237.
    C. Kittel, Phys. Rev. B 83, 458 (1951)Google Scholar
  238. 238.
    W. Schranz, H. Kabelka, A. Sarras, M. Burock, Appl. Phys. Lett. 101, 141913 (2012)Google Scholar
  239. 239.
    Y. Wang, W. Sun, X. Chen, H. Shen, B. Lu, Phys. Stat. Sol. A 102, 279 (1987)Google Scholar
  240. 240.
    A.G. Khachaturyan, S.M. Shapiro, S. Semenovskaya, Phys. Rev. B 43, 10832 (1991)Google Scholar
  241. 241.
    A. Diestel, A. Backen, U.K. Rößler, L. Schultz, S. Fähler, Appl. Phys. Lett. 99, 092512 (2011)Google Scholar
  242. 242.
    R.V. Kohn, S. Müller, Phil. Mag. A 66, 697 (1993)Google Scholar
  243. 243.
    D. Schryvers, Phil. Mag. A 68, 1017 (1993)Google Scholar
  244. 244.
    G. Arlt, J. Mater. Sci. 25, 2655 (1990)Google Scholar
  245. 245.
    T. Waitz, W. Pranger, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Eng. A 481–482, 479 (2008)Google Scholar
  246. 246.
    T. Waitz, Acta Mater. 55, 2273 (2005)Google Scholar
  247. 247.
    V.K. Wadhawan, Smart Structures: Blurring the Distinction Between the Living and the Nonliving (Oxford University Press, Oxford, 2007)Google Scholar
  248. 248.
    E.A. Prokofiev, J.A. Burow, E.J. Payton, R. Zarnetta, J. Frenzel, D.V. Gunderov, R.Z. Valiev, G. Eggeler, Adv. Eng. Mater. 12, 747 (2010)Google Scholar
  249. 249.
    K. Bhattacharya, R.D. James, J. Mech. Phys. Solids 47, 531 (1999)Google Scholar
  250. 250.
    K. Bhattacharya, R.D. James, Science 307, 53 (2005)Google Scholar
  251. 251.
    Y.C. Shu, J.H. Yen, Acta Mater. 56, 3969 (2008)Google Scholar
  252. 252.
    S. Manchuraju, A. Kroeger, C. Somsen, A. Dlouhy, G. Eggeler, P.M. Sarosi, P.M. Anderson, M.J. Mills, Acta Mater. 60, 2770 (2012)Google Scholar
  253. 253.
    Z. Wu, W. Duan, N. Huang, J. Wu, B.L. Gu, Nanotechnology 18, 325703 (2007)Google Scholar
  254. 254.
    J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H. Park, Nano Lett. 6, 735 (2006)Google Scholar
  255. 255.
    J. Slutsker, A. Artemev, A. Roytburd, Phys. Rev. Lett. 100, 087602 (2008)Google Scholar
  256. 256.
    A. Schilling, D. Byrne, G. Catalan, K.G. Webber, Y.A. Genenko, G.S. Wu, J.F. Scott, J.M. Gregg, Nano Lett. 9, 3359 (2009)Google Scholar
  257. 257.
    L.J. McGilly, J.M. Gregg, Nano Lett. 11, 4490 (2011)Google Scholar
  258. 258.
    E.I. Shishkin, V.Ya. Shur, O. Mieth, L.M. Eng, L.L. Galambos, R.O. Mile, Ferroelectrics 340, 129 (2006)Google Scholar
  259. 259.
    K. Fujimoto, Y. Cho, Appl. Phys. Lett. 83, 5265 (2003)Google Scholar
  260. 260.
    G. Rosenman, P. Urensky, A. Agronin, Y. Rosenwaks, M. Molotskii, Appl. Phys. Lett. 82, 103 (2003)Google Scholar
  261. 261.
    T. Nattermann, Y. Shapir, I. Vilfan, Phys. Rev. B 42, 8577 (1990)Google Scholar
  262. 262.
    M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989)Google Scholar
  263. 263.
    L.E. Cross, Relaxor Ferroelectrics, Springer Series in Materials Science, vol 114 (2003), p.131Google Scholar
  264. 264.
    W. Kleemann, Annu. Rev. Mater. Res. 37, 415 (2007)Google Scholar
  265. 265.
    J. Zhang, Y. Wang, X. Ding, Z. Zhang, Y. Zhou, X. Ren, D. Wang, Y. Ji, M. Song, K. Otsuka, J. Sun, Phys. Rev. B 84, 214201 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Physics, Physics of Nanostructured MaterialsUniversity of ViennaViennaAustria
  2. 2.Faculty of Physics, Physics of Functional MaterialsUniversity of ViennaViennaAustria
  3. 3.Vienna University of Technology, Soft Matter TheoryViennaAustria

Personalised recommendations