Skip to main content

Glassy Phenomena in Relaxor Ferroelectrics

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

Abstract

Quenched random fields (RFs) are widely believed to be at the origin of the peculiar behavior of relaxor ferroelectrics such as PbMg1/3Nb2/3O3 (PMN), SrxBa1-xNb2O6 (SBN), and BaTi1−x Zr x O3 (BTZ), hence, giving rise to strong frequency dispersion of the dielectric response, an apparent lack of macroscopic symmetry breaking at low temperatures, and the formation of polar nanoregions (PNRs) thus creating random ‘domain states’. A fundamental completion of relaxor physics toward a cluster glass ground state of the randomly interacting PNRs appears necessary as evidenced by dynamic criticality and non-ergodic aging and rejuvenation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Smolenskii, V.A. Isupov, Dokl. Acad. Nauk SSSR 97, 653 (1954)

    Google Scholar 

  2. M.E. Lines A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Chapter 9 (Clarendon Press, Oxford, 1979), pp. 28–56

    Google Scholar 

  3. G.A. Samara, J. Phys.: Condens. Matter 15, R367 (2003)

    Google Scholar 

  4. G.A. Samara, Phys. Rev. B 71, 224108 (2005)

    Article  Google Scholar 

  5. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, S.N. Popov, Fizika Tverdogo Tela 2, 2906 (1960)

    Google Scholar 

  6. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  Google Scholar 

  7. L.E. Cross, Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  8. S.B. Vakhrushev, B.E. Kvyatkovsky, A.A. Naberezhov, N.M. Okuneva, B.B. Toperverg, Ferroelectrics 90, 173 (1989)

    Article  Google Scholar 

  9. D. Viehland, M. Wuttig, L.E. Cross, Ferroelectrics 120, 71 (1991)

    Article  Google Scholar 

  10. V.A. Isupov, Fizika Tverdogo Tela 5, 187 (1963)

    Google Scholar 

  11. L. Néel, Ann. Géophys. 5, 99 (1949)

    Google Scholar 

  12. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. 43, 8316 (1991)

    Article  Google Scholar 

  13. V. Westphal, W. Kleemann, M.D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992)

    Article  Google Scholar 

  14. I. Imry, S.K. Ma, Phys. Rev. Lett. 35, 1399 (1975)

    Article  Google Scholar 

  15. V.V. Shvartsman, W. Kleemann, T. Lukasiewicz, J. Dec, Phys. Rev. B 77, 054105 (2008)

    Article  Google Scholar 

  16. I.-K. Jeong, T.W. Darling, J.K. Lee, Th Proffen, R.H. Heffner, J.S. Park, K.S. Hong, W. Dmowski, T. Egami, Phys. Rev. Lett. 94, 147602 (2005)

    Article  Google Scholar 

  17. G. Burns, F.H. Dacol, Solid State Commun. 48, 853 (1983)

    Google Scholar 

  18. G. Burns, F.H. Dacol, Phase Trans. 5, 261 (1985)

    Google Scholar 

  19. B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, E. Suard, Phys. Rev. B 65, 024104 (2001)

    Article  Google Scholar 

  20. E. Dul’kin, I.P. Raevskii, S.M. Emel’yanov, Phys. Solid State 45, 158 (2003)

    Article  Google Scholar 

  21. B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul’kin, E. Mojaev, M. Roth, Phys. Rev. B 80, 064103 (2009)

    Article  Google Scholar 

  22. E. Dul’kin, S. Kojima, M. Roth, J. Appl. Phys. 110, 044106 (2011)

    Article  Google Scholar 

  23. H. Qian, L.A. Bursill, Int. J. Mod. Phys. 10, 2027 (1996)

    Article  Google Scholar 

  24. J. Esser, U. Nowak, K.D. Usadel, Phys. Rev. B 55, 5866 (1997)

    Article  Google Scholar 

  25. W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, R. Pankrath, Europhys. Lett. 57, 14 (2002)

    Article  Google Scholar 

  26. S. Semenovskaya, A.D. Khachaturyan, Ferroelectrics 206, 157 (1998)

    Article  Google Scholar 

  27. S. Semenovskaya, A.D. Khachaturyan, J. Appl. Phys. 83, 5125 (1998)

    Article  Google Scholar 

  28. V.V. Shvartsman, W. Kleemann, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 53, 2275 (2006)

    Article  Google Scholar 

  29. B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. B 72, 064113 (2005)

    Article  Google Scholar 

  30. U.V. Waghmare, E. Cockayne, B.P. Burton, Ferroelectrics 291, 187 (2003)

    Article  Google Scholar 

  31. S. Tinte, B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. Lett. 97, 137601 (2006)

    Article  Google Scholar 

  32. B.J. Rodriguez, S. Jesse, A.A. Bokov, Z.-G. Ye, S.V. Kalinin, Appl. Phys. Lett. 95, 092904 (2009)

    Article  Google Scholar 

  33. A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B. Rodriguez, P. Wu, A. Bokov, Z.-G. Ye, B. Dkhil, L.-Q. Chen, M. Kosec, S.V. Kalinin, Adv. Funct. Mat. 21, 1977 (2011)

    Article  Google Scholar 

  34. V.V. Shvartsman, W. Kleemann, D. Kiselev, I.K. Bdikin, A.L. Kholkin, in Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, eds. by A. Gruverman, S.V. Kalinin, Chapter 12 (Springer Verlag, Berlin, 2011), pp. 345–384

    Google Scholar 

  35. P. Lehnen, W. Kleemann, Th Woike, R. Pankrath, Phys. Rev. B 64, 224109 (2001)

    Article  Google Scholar 

  36. J. Dec, W. Kleemann, V.V. Shvartsman, D.C. Lupascu, T. Łukasiewicz, Appl. Phys. Lett. 100, 052903 (2012)

    Article  Google Scholar 

  37. U. Nowak, D. Esser, K.D. Usadel, Physica A232, 40 (1996)

    Article  Google Scholar 

  38. R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Adv. Phys. 60, 229 (2011)

    Article  Google Scholar 

  39. M.A. Carpenter, J.F.J. Bryson, G. Catalan, C.J. Howard, J. Phys.: Condens. Matter 24, 045901 (2012)

    Google Scholar 

  40. M.A. Carpenter, J.F.J. Bryson, G. Catalan, S.J. Zhang, N.J. Donnelly, J. Phys.: Condens. Matter 24, 045902 (2012)

    Google Scholar 

  41. J. Íñiguez, L. Bellaiche, Phys. Rev. B 73, 144109 (2006)

    Article  Google Scholar 

  42. S. Fishman, A. Aharony, J. Phys C12, L729 (1978)

    Google Scholar 

  43. U. Nowak, Fractals 2, 992 (1993)

    Article  Google Scholar 

  44. W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012)

    Article  Google Scholar 

  45. S. Bedanta, W. Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009)

    Article  Google Scholar 

  46. G.N. Kakazei, P.P. Freitas, S. Cardoso, A.M.L. Lopes, M.M. Pereira de Azevedo, YuG Pogorelov, J.B. Sousa, IEEE Trans. Magn. 35, 2895 (1999)

    Article  Google Scholar 

  47. D. Babonneau, F. Petroff, J.-L. Maurice, F. Fettar, A. Vaurès, A. Naudon, Appl. Phys. Lett. 76, 2892 (2000)

    Article  Google Scholar 

  48. W. Kleemann, O. Petracic, Ch. Binek, G.N. Kakazei, YuG Pogorelov, J.B. Sousa, S. Cardoso, P.P. Freitas, Phys. Rev. B 63, 134423 (2001)

    Article  Google Scholar 

  49. A.T. Ogielski, Phys. Rev. B 32, 7384 (1985)

    Article  Google Scholar 

  50. O. Petracic, W. Kleemann, Ch. Binek, G.N. Kakazei, YuG Pogorelov, J.B. Sousa, S. Cardoso, P.P. Freitas, Phase Trans. 75, 73 (2002)

    Article  Google Scholar 

  51. P.E. Jönsson, Adv. Chem. Phys. 128, 191 (2004)

    Google Scholar 

  52. J. Dec, W. Kleemann, T. Lukasiewicz, Phase Trans. 79, 505 (2006)

    Article  Google Scholar 

  53. J. Dec, W. Kleemann, S. Miga, V.V. Shvartsman, T. Łukasiewicz, M. Swirkowicz, Phase Transitions 80, 131 (2007)

    Article  Google Scholar 

  54. D.S. Fisher, Phys. Rev. Lett. 56, 416 (1986)

    Article  Google Scholar 

  55. W. Kleemann, J. Dec, V.V. Shvartsman, Z. Kutnjak, T. Braun, Phys. Rev. Lett. 97, 065702 (2006)

    Article  Google Scholar 

  56. V.V. Shvartsman, J. Dec, Z.K. Xu, J. Banys, P. Keburis, W. Kleemann, Phase Transitions 81, 1013 (2008)

    Article  Google Scholar 

  57. V.V. Shvartsman, J. Zhai, W. Kleemann, Ferroelectrics 379, 77 (2009)

    Article  Google Scholar 

  58. W. Kleemann, J. Mater. Sci. 41, 129 (2006)

    Article  Google Scholar 

  59. C. Laulhé, F. Hippert, J. Kreisel, M. Maglione, A. Simon, J.L. Hazemann, V. Nassif, Phys. Rev. B74, 014106 (2006)

    Article  Google Scholar 

  60. C. Laulhé, F. Hippert, J. Kreisel, A. Pasturel, A. Simon, J.L. Hazemann, R. Bellissent, G.J. Cuello, Phase Trans. 84, 438 (2011)

    Article  Google Scholar 

  61. W. Kleemann, Int. J. Mod. Phys. B 7, 2469 (1993)

    Article  Google Scholar 

  62. A.R. Akbarzadeh, S. Prosandeev, E.J. Walter, A. Al-Barakaty, L. Bellaiche, Phys. Rev. Lett. 108, 257601 (2012)

    Article  Google Scholar 

  63. W. Kleemann, S. Miga, J. Dec, J. Zhai, Appl. Phys. Lett. 102, 232907 (2013)

    Google Scholar 

  64. A.K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994)

    Article  Google Scholar 

  65. S. Ikeda, H. Kominami, K. Koyama, Y. Wada, J. Appl. Phys. 62, 3339 (1987)

    Article  Google Scholar 

  66. S. Miga, J. Dec, W. Kleemann, in Ferroelectrics, ed. by M. Lallart (InTech, Rijeka 2011), pp. 181–202

    Google Scholar 

  67. K. Binder, J. Reger, Advan. Phys. 41, 547 (1992)

    Article  Google Scholar 

  68. R. Pirc, B. Tadić, R. Blinc, Phys. B 193, 109 (1994)

    Article  Google Scholar 

  69. R. Pirc, Z. Kutnjak, N. Novak, J. Appl. Phys. 112, 114122 (2012)

    Article  Google Scholar 

  70. J. Hessinger, K. Knorr, Phys. Rev. B 47, 14813 (1993)

    Article  Google Scholar 

  71. Y. Bitla, S.N. Kaul, Phys. Rev. B 86, 094405 (2012)

    Article  Google Scholar 

  72. N. Novak, R. Pirc, M. Wencka, Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012)

    Article  Google Scholar 

  73. M. Tachibana, E. Takayama-Muromachi, Phys. Rev. B 79, 100104 (2009)

    Article  Google Scholar 

  74. D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S.X. Chi, J. Leao, X.F. Long, Y.J. Xie, A.A. Bokov, Z.-G. Ye, P.Ganesh, P.M. Gehring, Proc. Nat. Acad. Sci. 111, 1754 (2014)

    Google Scholar 

Download references

Acknowledgments

Thanks are due to S. Bedanta, Ch. Binek, P. Borisov, X. Chen, J. Dec, P. Lehnen, S. Miga, O. Petracic, and V.V. Shvartsman, who shared their thoughts and skills over many years toward better understanding the physics of both ferroelectric relaxors and disordered magnetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kleemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleemann, W. (2014). Glassy Phenomena in Relaxor Ferroelectrics. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_10

Download citation

Publish with us

Policies and ethics