Advertisement

Scalar-Tensor and Multiscalar-Tensor Gravity and Cosmological Models

  • Piret Kuusk
  • Laur Järv
  • Erik Randla
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 85)

Abstract

We consider scalar-tensor and multiscalar-tensor theories of gravity and their formulations in the Jordan and the Einstein conformal frames. After constructing a generic multi-scalar tensor action, we derive its full equations of motion as well as equations for homogeneous isotropic cosmological models in the Jordan frame. We use methods of dynamical systems in the case of two scalar fields to determine the fixed point and conditions for its being an attractor.

Notes

Acknowledgments

This work was supported by the Estonian Science Foundation Grant No. 8837 and by Estonian Ministry for Education and Science Support Grant SF0180013s07. The study was also supported by the European Union through the European Regional Development Fund (Centre of Excellence “Mesosystems: Theory and Applications”, TK114).

References

  1. 1.
    Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rept. 513, 1 (2012). arXiv:1106.2476 [astro-ph.CO]MathSciNetGoogle Scholar
  2. 2.
    Flanagan, E.: The conformal frame freedom in theories of gravitation. Class. Quant. Grav. 21, 3817 (2004). arXiv:gr-qc/0403063
  3. 3.
    Damour, T., Esposito-Farese, G.: Tensor-multi-scalar theories of gravitation. Class. Quant. Grav. 9, 2093 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Damour, T., Nordtvedt, K.: Tensor–scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 48, 3436 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cotsakis, S., Miritzis, J.: A note on wavemap-tensor cosmologies, modern theoretical and observational cosmology. In: Proceedings of the 2nd Hellenic Cosmology Meeting. Astrophysics and Space Science Library, vol. 276. Springer, (2002). arXiv:gr-qc/0107100
  6. 6.
    Bezrukov, F.L., Shaposhnikov, M.: The standard model higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th]CrossRefGoogle Scholar
  7. 7.
    Lerner, R.N., McDonald, J.: Gauge singlet scalar as inflaton and thermal relic dark matter. Phys. Rev. D 80, 123507 (2009). arXiv:0909.0520 [hep-ph]CrossRefGoogle Scholar
  8. 8.
    Hertzberg, M.P.: On inflation with non-minimal coupling. JHEP 1011, 023 (2010). arXiv:1002.2995 [hep-ph]Google Scholar
  9. 9.
    Pallis, C.: Non-minimally gravity-coupled inflationary models. Phys. Lett. B 692, 287 (2010). arXiv:1002.4765 [astro-ph.CO]
  10. 10.
    Buck, M., Fairbairn, M., Sakellariadou, M.: Inflation in models with conformally coupled scalar fields: an application to the noncommutative spectral action. Phys. Rev. D 82, 043509 (2010). arXiv:1005.1188 [hep-th]CrossRefGoogle Scholar
  11. 11.
    Koh, S., Minamitsuji, M.: Non-minimally coupled hybrid inflation. Phys. Rev. D 83, 046009 (2011). arXiv:1011.4655 [hep-th]CrossRefGoogle Scholar
  12. 12.
    Lerner, R.N., McDonald, J.: Distinguishing higgs inflation and its variants. Phys. Rev. D 83, 123522 (2011). arXiv:1104.2468 [hep-ph]CrossRefGoogle Scholar
  13. 13.
    Gong, J.-O., Lee, H.M.: Large non-gaussianity in non-minimal inflation. JCAP 1111, 040 (2011). arXiv:1105.0073 [hep-ph]Google Scholar
  14. 14.
    Lebedev, O., Lee, H.M.: Higgs portal inflation. Eur. Phys. J. C 71, 1821 (2011). arXiv:1105.2284 [hep-ph]CrossRefGoogle Scholar
  15. 15.
    Pallis, C., Toumbas, N.: Non-minimal higgs inflation and non-thermal leptogenesis in a supersymmetric pati-salam model. JCAP 1112, 002 (2011). arXiv:1108.1771 [hep-ph]CrossRefGoogle Scholar
  16. 16.
    Lerner, R.N., McDonald, J.: Unitarity-violation in generalized higgs inflation models. JCAP 11, 019 (2012). arXiv:1112.0954 [hep-ph]CrossRefGoogle Scholar
  17. 17.
    Gong, J.-O., Lee, H.M., Kang, S.K.: Inflation and dark matter in two higgs doublet models. JHEP 1204, 128 (2012). arXiv:1202.0288 [hep-ph]CrossRefGoogle Scholar
  18. 18.
    Lebedev, O.: On stability of the electroweak vacuum and the higgs portal. Eur. Phys. J. C 72, 2058 (2012). arXiv:1203.0156 [hep-ph]CrossRefGoogle Scholar
  19. 19.
    Einhorn, M.B., Jones, D.R.T.: Inflation with non-minimal gravitational couplings in supergravity. JHEP 1003, 026 (2010). arXiv:0912.2718 [hep-ph]CrossRefGoogle Scholar
  20. 20.
    Linde, A., Noorbala, M., Westphal, A.: Observational consequences of chaotic inflation with nonminimal coupling to gravity. JCAP 1103, 013 (2011). arXiv:1101.2652 [hep-th]CrossRefGoogle Scholar
  21. 21.
    Kaiser, D.I., Todhunter, A.T.: Primordial perturbations from multifield inflation with nonminimal couplings. Phys. Rev. D 81, 124037 (2010). arXiv:1004.3805 [astro-ph.CO]
  22. 22.
    Steinwachs, C.F., Kamenshchik, A.Y.: One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011). arXiv:1101.5047 [gr-qc]
  23. 23.
    Esposito-Farese, G., Polarski, D.: Scalar-tensor gravity in an accelerating universe. Phys. Rev. D 63, 063504 (2001). arXiv:gr-qc/0009034
  24. 24.
    Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010). arXiv:1003.1159 [gr-qc]
  25. 25.
    Faraoni, V., Jensen, M.N., Theuerkauf, S.A.: Non-chaotic dynamics in general-relativistic and scalar-tensor cosmology. Class. Quant. Grav. 23, 4215 (2006). arXiv:gr-qc/0605050
  26. 26.
    Järv, L., Kuusk, P., Saal, M.: Scalar-tensor cosmologies: fixed points of the Jordan frame scalar field. Phys. Rev. D 78, 083530 (2008). arXiv:0807.2159 [gr-qc]
  27. 27.
    Järv, L., Kuusk, P., Saal, M.: Scalar-tensor cosmology at the general relativity limit: Jordan vs Einstein frame. Phys. Rev. D 76, 103506 (2007). arXiv:0705.4644 [gr-qc]
  28. 28.
    Järv, L., Kuusk, P., Saal, M.: Scalar-tensor cosmologies with a potential in the general relativity limit: phase space view. Phys. Rev. D 81, 104007 (2010). arXiv:1003.1686 [gr-qc]
  29. 29.
    Järv, L., Kuusk, P., Saal, M.: Scalar-tensor cosmologies with a potential in the general relativity limit: time evolution. Phys. Lett. B 694, 1 (2010). arXiv:1006.1246 [gr-qc]
  30. 30.
    Järv, L., Kuusk, P., Saal, M.: Scalar-tensor cosmologies with dust matter in the general relativity limit. Phys. Rev. D 85, 064013 (2012). arXiv:1112.5308 [gr-qc]

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations