Skip to main content

On Dimensions of Vector Spaces of Conformal Killing Forms

  • Conference paper
  • First Online:
Algebra, Geometry and Mathematical Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 85))

Abstract

In this article there are found precise upper bounds of dimension of vector spaces of conformal Killing forms, closed and coclosed conformal Killing \(r\)-forms \((1\,{\le }\, r\,{\le }\, n {-} 1)\) on an \(n\)-dimensional manifold. It is proved that, in the case of \(n\)-dimensional closed Riemannian manifold, the vector space of conformal Killing \(r\)-forms is an orthogonal sum of the subspace of Killing forms and of the subspace of exact conformal Killing \(r\)-forms. This is a generalization of related local result of Tachibana and Kashiwada on pointwise decomposition of conformal Killing \(r\)-forms on a Riemannian manifold with constant curvature. It is shown that the following well known proposition may be derived as a consequence of our result: any closed Riemannian manifold having zero Betti number and admitting group of conformal mappings, which is non equal to the group of motions, is conformal equivalent to a hypersphere of Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alodan, H.: Conformal gradient vector fields. Differential Geometry—Dynamical System 12, 1–3 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  3. Besse, A.L.: Géométrie Riemannienne en dimension 4. Cedic-Fernand Nathan, Paris (1981)

    MATH  Google Scholar 

  4. Benn, I.M., Chalton, P.: Dirac symmetry operators from conformal Killing-Yano tensors. Class. Quantum Gravity 14(5), 1037–1042 (1997)

    Article  MATH  Google Scholar 

  5. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)

    MATH  Google Scholar 

  6. Kühnel, W., Rademacher, H.-B.: Conformal transformations of pseudo-Riemannian manifolds. Recent developments in pseudo-Riemannian geometry. Zürich Eur. Math. Soc. 261–298 (2008)

    Google Scholar 

  7. Kashiwada, T.: On conformal Killing tensor. Nat. Sci. Rep. Ochanomizu Univ 19(2), 67–74 (1968)

    MathSciNet  MATH  Google Scholar 

  8. Kora, M.: On conformal Killing forms and the proper space of for p-forms. Math. J. Okayama Univ. 22, 195–204 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Lichnerowicz, A.: Géométrie des groupes de transformations. Dunod, Paris (1958)

    MATH  Google Scholar 

  10. Maccallum, M., Herlt, E., Schmutzer, E.E.: Exact Solutions of the Einstein Field Equations. Deutscher Verlag der Wissenschaften, Berlin (1980)

    Google Scholar 

  11. Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacký University Press, Olomouc (2009)

    MATH  Google Scholar 

  12. Novikov, S.P.: Topology I. Encycl. Math. Sci. 12, 1–310 (1996) (translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 12, 5–252 (1986))

    Google Scholar 

  13. Petersen, P.: Riemannian Geometry. Springer, New York (1997)

    Google Scholar 

  14. Pierzchalski, A.: Ricci curvature and quasiconformal deformations of a Riemannian manifold. Manuscripta Math. 66, 113–127 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Rham, G.: Variétés Différentiables. Hermann, Paris (1955)

    MATH  Google Scholar 

  16. Stepanov, S.E.: A new strong Laplacian on differential forms. Math. Notes 76(3), 420–425 (2004)

    Article  MATH  Google Scholar 

  17. Stepanov, S.E.: Curvature and Tachibana numbers. Sbornik Math. 202(7), 135–146 (2011)

    Article  Google Scholar 

  18. Stepanov, S.E.: The Killing-Yano tensor. Theoret. Math. Phys. 134(3), 333–338 (2003)

    Article  MATH  Google Scholar 

  19. Stepanov, S.E.: The vector space of conformal Killing forms on a Riemannian manifold. J. Math. Sci. 110(4), 2892–2906 (2002)

    Article  MathSciNet  Google Scholar 

  20. Stepanov, S.E.: On conformal Killing 2-form of the electromagnetic field. J. Geom. Phys. 33, 191–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stepanov, S.E.: Vanishing theorems in affine, Riemannian and Lorenz geometries. J. Math. Sci. 141(1), 929–964 (2007)

    Article  MathSciNet  Google Scholar 

  22. Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245(3), 503–627 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Suyama, Y., Tsukamoto, Y.: Riemannian manifolds admitting a certain conformal transformation group. J. Diff. Geom. 5, 415–426 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Stepanov, S.E.: Some conformal and projective scalar invariants of Riemannian manifolds. Math. Notes 80(6), 848–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tachibana, S.: On the proper space of for m-forms im 2m dimensional conformal flat Riemannian manifolds. Nat. Sci. Rep. Ochanomizu Univ. 28, 111–115 (1978)

    MathSciNet  Google Scholar 

  26. Tachibana, S.: On conformal Killing tensor in a Riemannian space. Tohoku Math. J. 21, 56–64 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tanno, S., Weber, W.C.: Closed conformal vector fields. J. Diff. Geom. 3, 361–366 (1969)

    MathSciNet  MATH  Google Scholar 

  29. Wolf, J.A.: Space of Constant Curvature. California University Press, Berkley (1972)

    Google Scholar 

  30. Yano, K.: Concircular geometry. Proc. Imp. Acad. Tokyo 16, 195–200, 354–360, 442–448, 505–511 (1940)

    Google Scholar 

  31. Yano, K., Bochner, C.: Curvature and Betti Numbers. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  32. Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Diff. Geom. 2, 161–184 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The paper was supported by grant P201/11/0356 of The Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Stepanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stepanov, S.E., Jukl, M., Mikeš, J. (2014). On Dimensions of Vector Spaces of Conformal Killing Forms. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds) Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55361-5_29

Download citation

Publish with us

Policies and ethics