Skip to main content

Transmission of Sound Through Finite Multiple-Panel Partition

  • Chapter
  • First Online:
  • 1563 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This chapter is organized as three parts: in the first part, the vibroacoustic performance of a rectangular double-panel partition with enclosed air cavity and simply mounted on an infinite acoustic rigid baffle is investigated analytically. The sound velocity potential method rather than the commonly used cavity modal function method is employed, which possesses good expandability and has significant implications for further vibroacoustic investigations. The simply supported boundary condition is accounted for by using the method of modal function, and double Fourier series solutions are obtained to characterize the vibroacoustic behaviors of the structure. Results for sound transmission loss (STL), panel vibration level, and sound pressure level are presented to explore the physical mechanisms of sound energy penetration across the finite double-panel partition. Specifically, focus is placed upon the influence of several key system parameters on sound transmission, including the thickness of air cavity, structural dimensions, and the elevation angle and azimuth angle of the incidence sound. Further extensions of the sound velocity potential method to typical framed double-panel structures are also proposed.

In the second part, the air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally, and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes.

In the third part, an analytical model for sound transmission through a clamped triple-panel partition of finite extent and separated by two impervious air cavities is formulated. The solution derived from the model takes the form of that for a clamp-supported rectangular plate. A set of modal functions (or more strictly speaking, the basic functions) are employed to account for the clamped boundary conditions, and the application of the virtual work principle leads to a set of simultaneous algebraic equations for determining the unknown modal coefficients. The sound transmission loss (STL) of the triple-panel partition as a function of excitation frequency is calculated and compared with that of a double-panel partition. The model predictions are then used to explore the physical mechanisms associated with the various dips on the STL versus frequency curve, including the equivalent “mass-spring” resonance, the standing-wave resonance, and the panel modal resonance. The asymptotic variation of the solution from a finite-sized partition to an infinitely large partition is illustrated in such a way as to demonstrate the influence of the boundary conditions on the soundproofing capability of the partition. In general, a triple-panel partition outperforms a double-panel partition in insulating the incident sound, and the relatively large number of system parameters pertinent to the triple-panel partition in comparison with that of the double-panel partition offers more design space for the former to tailor its noise reduction performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grosveld F (1992) Plate acceleration and sound transmission due to random acoustic and boundary-layer excitation. AIAA J 30(3):601–607

    Article  Google Scholar 

  2. Maury C, Gardonio P, Elliott SJ (2002) Model for active control of flow-induced noise transmitted through double partitions. AIAA J 40(6):1113–1121

    Article  Google Scholar 

  3. Pietrzko SJ, Mao Q (2008) New results in active and passive control of sound transmission through double wall structures. Aerosp Sci Technol 12(1):42–53

    Article  MATH  Google Scholar 

  4. Wu SF, Wu G, Puskarz MM et al (1997) Noise transmission through a vehicle side window due to turbulent boundary layer excitation. J Vib Acoust 119(4):557–562

    Article  Google Scholar 

  5. Quirt JD (1982) Sound transmission through windows I. Single and double glazing. J Acoust Soc Am 72(3):834–844

    Article  Google Scholar 

  6. Quirt JD (1983) Sound transmission through windows II. Double and triple glazing. J Acoust Soc Am 74(2):534–542

    Article  Google Scholar 

  7. Lyle K, Mixson J (1987) Laboratory study of sidewall noise transmission and treatment for a light aircraft fuselage. J Aircr 24(9):660–665

    Article  Google Scholar 

  8. Xin FX, Lu TJ (2009) Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects. J Acoust Soc Am 125(3): 1506–1517

    Article  Google Scholar 

  9. Xin FX, Lu TJ, Chen CQ (2008) Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity. J Acoust Soc Am 124(6):3604–3612

    Article  Google Scholar 

  10. Franco F, Cunefare KA, Ruzzene M (2007) Structural-acoustic optimization of sandwich panels. J Vib Acoust 129(3):330–340

    Article  Google Scholar 

  11. Xin FX, Lu TJ, Chen CQ (2009) External mean flow influence on noise transmission through double-leaf aeroelastic plates. AIAA J 47(8):1939–1951

    Article  Google Scholar 

  12. Xin FX, Lu TJ, Chen CQ (2009) Dynamic response and acoustic radiation of double-leaf metallic panel partition under sound excitation. Comput Mater Sci 46(3):728–732

    Article  Google Scholar 

  13. Laulagnet B (1998) Sound radiation by a simply supported unbaffled plate. J Acoust Soc Am 103(5):2451–2462

    Article  Google Scholar 

  14. Lomas NS, Hayek SI (1977) Vibration and acoustic radiation of elastically supported rectangular plates. J Sound Vib 52(1):1–25

    Article  MATH  Google Scholar 

  15. Sewell EC (1970) Transmission of reverberant sound through a single-leaf partition surrounded by an infinite rigid baffle. J Sound Vib 12(1):21–32

    Article  MATH  Google Scholar 

  16. London A (1950) Transmission of reverberant sound through double walls. J Acoust Soc Am 22(2):270–279

    Article  Google Scholar 

  17. Antonio JMP, Tadeu A, Godinho L (2003) Analytical evaluation of the acoustic insulation provided by double infinite walls. J Sound Vib 263(1):113–129

    Article  Google Scholar 

  18. Wang J, Lu TJ, Woodhouse J et al (2005) Sound transmission through lightweight double-leaf partitions: theoretical modelling. J Sound Vib 286(4–5):817–847

    Article  Google Scholar 

  19. Kropp W, Rebillard E (1999) On the air-borne sound insulation of double wall constructions. Acta Acust Acust 85:707–720

    Google Scholar 

  20. Tadeu A, Pereira A, Godinho L et al (2007) Prediction of airborne sound and impact sound insulation provided by single and multilayer systems using analytical expressions. Appl Acoust 68(1):17–42

    Article  Google Scholar 

  21. White PH, Powell A (1966) Transmission of random sound and vibration through a rectangular double wall. J Acoust Soc Am 40(4):821–832

    Article  Google Scholar 

  22. Cummings A, Mulholland KA (1968) The transmission loss of finite sized double panels in a random incidence sound field. J Sound Vib 8(1):126–133

    Article  Google Scholar 

  23. Villot M, Guigou C, Gagliardini L (2001) Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures. J Sound Vib 245(3):433–455

    Article  Google Scholar 

  24. Chazot JD, Guyader JL (2007) Prediction of transmission loss of double panels with a patch-mobility method. J Acoust Soc Am 121(1):267–278

    Article  Google Scholar 

  25. Yairi M, Sakagami K, Sakagami E et al (2002) Sound radiation from a double-leaf elastic plate with a point force excitation: effect of an interior panel on the structure-borne sound radiation. Appl Acoust 63(7):737–757

    Article  Google Scholar 

  26. Carneal JP, Fuller CR (2004) An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems. J Sound Vib 272(3–5):749–771

    Article  Google Scholar 

  27. Brunskog J (2005) The influence of finite cavities on the sound insulation of double-plate structures. J Acoust Soc Am 117(6):3727–3739

    Article  Google Scholar 

  28. Beranek LL, Work GA (1949) Sound transmission through multiple structures containing flexible blankets. J Acoust Soc Am 21(4):419–428

    Article  Google Scholar 

  29. Mulholland KA, Parbrook HD, Cummings A (1967) The transmission loss of double panels. J Sound Vib 6(3):324–334

    Article  Google Scholar 

  30. Fahy F (1985) Sound and structural vibration: radiation, transmission and response. Academic, London

    Google Scholar 

  31. Bao C, Pan J (1997) Experimental study of different approaches for active control of sound transmission through double walls. J Acoust Soc Am 102(3):1664–1670

    Article  Google Scholar 

  32. Carneal JP, Fuller CR (1995) Active structural acoustic control of noise transmission through double panel systems. AIAA J 33(4):618–623

    Article  Google Scholar 

  33. Hongisto V (2000) Sound insulation of doors – Part 1: Prediction models for structural and leak transmission. J Sound Vib 230(1):133–148

    Article  Google Scholar 

  34. Tadeu AJB, Mateus DMR (2001) Sound transmission through single, double and triple glazing. Experimental evaluation. Appl Acoust 62(3):307–325

    Article  Google Scholar 

  35. Leppington FG, Broadbent EG, Butler GF (2006) Transmission of sound through a pair of rectangular elastic plates. Ima J Appl Math 71(6):940–955

    Article  MATH  MathSciNet  Google Scholar 

  36. Panneton R, Atalla N (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J Acoust Soc Am 100(1):346–354

    Article  Google Scholar 

  37. Mahjoob MJ, Mohammadi N, Malakooti S (2009) An investigation into the acoustic insulation of triple-layered panels containing Newtonian fluids: theory and experiment. Appl Acoust 70(1):165–171

    Article  Google Scholar 

  38. Jones RE (1979) Intercomparisons of laboratory determinations of airborne sound transmission loss. J Acoust Soc Am 66(1):148–164

    Article  Google Scholar 

  39. Toyoda M, Kugo H, Shimizu T et al (2008) Effects of an air-layer-subdivision technique on the sound transmission through a single plate. J Acoust Soc Am 123(2):825–831

    Article  Google Scholar 

  40. Liu BL, Feng LP, Nilsson A (2007) Influence of overpressure on sound transmission through curved panels. J Sound Vib 302(4–5):760–776

    Article  Google Scholar 

  41. Pellicier A, Trompette N (2007) A review of analytical methods, based on the wave approach, to compute partitions transmission loss. Appl Acoust 68(10):1192–1212

    Article  Google Scholar 

  42. Cheng L, Li YY, Gao JX (2005) Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure. J Acoust Soc Am 117(5):2742–2751

    Article  Google Scholar 

  43. Lee JH, Kim J (2002) Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method. J Sound Vib 251(2):349–366

    Article  Google Scholar 

  44. Maidanik G (1962) Response of ribbed panels to reverberant acoustic fields. J Acoust Soc Am 34(6):809–826

    Article  Google Scholar 

  45. Ruzzene M (2004) Vibration and sound radiation of sandwich beams with honeycomb truss core. J Sound Vib 277(4–5):741–763

    Article  Google Scholar 

  46. Liu B, Feng L, Nilsson A (2007) Sound transmission through curved aircraft panels with stringer and ring frame attachments. J Sound Vib 300(3–5):949–973

    Article  Google Scholar 

  47. Takahashi D (1995) Effects of panel boundedness on sound transmission problems. J Acoust Soc Am 98(5):2598–2606

    Article  Google Scholar 

  48. Lin G-F, Garrelick JM (1977) Sound transmission through periodically framed parallel plates. J Acoust Soc Am 61(4):1014–1018

    Article  Google Scholar 

  49. Takahashi D (1983) Sound radiation from periodically connected double-plate structures. J Sound Vib 90(4):541–557

    Article  MATH  Google Scholar 

  50. Xin FX, Lu TJ (2009) Effects of core topology on sound insulation performance of lightweight all-metallic sandwich panels. Mater Manuf Process 26(9):1213–1221

    Article  Google Scholar 

  51. Brunskog J (2005) The influence of finite cavities on the sound insulation of double-plate structures. Acta Astronaut 117(6):3727–3739

    Google Scholar 

  52. Pan J, Bao C (1998) Analytical study of different approaches for active control of sound transmission through double walls. J Acoust Soc Am 103(4):1916–1922

    Article  Google Scholar 

  53. Kim BK, Kang HJ, Kim JS et al (2004) Tunneling effect in sound transmission loss determination: theoretical approach. J Acoust Soc Am 115(5):2100–2109

    Article  Google Scholar 

  54. Farag NH, Pan J (1998) Free and forced in-plane vibration of rectangular plates. J Acoust Soc Am 103(1):408–413

    Article  Google Scholar 

  55. Bosmans I, Mees P, Vermeir G (1996) Structure-borne sound transmission between thin orthotropic plates: analytical solutions. J Sound Vib 191(1):75–90

    Article  Google Scholar 

  56. Graham WR (2007) Analytical approximations for the modal acoustic impedances of simply supported, rectangular plates. J Acoust Soc Am 122(2):719–730

    Article  Google Scholar 

  57. Utley WA, Fletcher BL (1973) The effect of edge conditions on the sound insulation of double windows. J Sound Vib 26(1):63–72

    Article  Google Scholar 

  58. Hongisto V, Lindgren M, Keranen J (2001) Enhancing maximum measurable sound reduction index using sound intensity method and strong receiving room absorption. J Acoust Soc Am 109(1):254–265

    Article  Google Scholar 

  59. ASTM E 90-04 (2004) Standard test method for laboratory measurement of airborne sound transmission loss of building partitions and elements

    Google Scholar 

  60. Guigou C, Li Z, Fuller CR (1996) The relationship between volume velocity and far-field radiated pressure of a planar structure. J Sound Vib 197(2):252–254

    Article  Google Scholar 

  61. Leissa AW (1993) Vibrations of plates. Acoustical Society of America, New York

    Google Scholar 

  62. Leissa AW (1973) The free vibration of rectangular plates. J Sound Vib 31:257–293

    Article  MATH  Google Scholar 

  63. Laura PAA, Grossi RO (1981) Transverse vibrations of rectangular plates with edges elastically restrained against translation and rotation. J Sound Vib 75(1):101–107

    Article  MATH  Google Scholar 

  64. Xin FX, Lu TJ, Chen CQ (2010) Sound transmission through simply supported finite double-panel partitions with enclosed air cavity. J Vib Acoust 132(1):011008: 011001–011011

    Article  Google Scholar 

  65. Xin FX, Lu TJ (2010) Analytical modeling of sound transmission across finite aeroelastic panels in convected fluids. J Acoust Soc Am 128(3):1097–1107

    Article  Google Scholar 

  66. Xin FX, Lu TJ (2011) Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption. J Acoust Soc Am 129(4):1919–1934

    Article  Google Scholar 

  67. Xin FX, Lu TJ (2011) Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: sound radiation. Comput Struct 89(5–6):507–516

    Article  Google Scholar 

  68. Langley RS, Smith JRD, Fahy FJ (1997) Statistical energy analysis of periodically stiffened damped plate structures. J Sound Vib 208(3):407–426

    Article  Google Scholar 

  69. Xin FX, Lu TJ (2010) Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption. Compos Sci Technol 70(15):2198–2206

    Article  Google Scholar 

  70. Xin FX, Lu TJ (2010) Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: sound transmission. J Mech Phys Solids 58(9):1374–1396

    Article  MATH  MathSciNet  Google Scholar 

  71. Gardonio P, Elliott SJ (1999) Active control of structure-borne and airborne sound transmission through double panel. J Aircr 36(6):1023–1032

    Article  Google Scholar 

  72. Kaiser OE, Pietrzko SJ, Morari M (2003) Feedback control of sound transmission through a double glazed window. J Sound Vib 263(4):775–795

    Article  Google Scholar 

  73. Gardonio P (2002) Review of active techniques for aerospace vibro-acoustic control. J Aircr 39(2):206–214

    Article  Google Scholar 

  74. Sas P, Bao C, Augusztinovicz F et al (1995) Active control of sound transmission through a double panel partition. J Sound Vib 180(4):609–625

    Article  Google Scholar 

  75. Mulholland KA, Price AJ, Parbrook HD (1968) Transmission loss of multiple panels in a random incidence field. J Acoust Soc Am 43(6):1432–1435

    Article  Google Scholar 

  76. Yairi M, Sakagami K, Morimoto M et al (2003) Effect of acoustical damping with a porous absorptive layer in the cavity to reduce the structure-borne sound radiation from a double-leaf structure. Appl Acoust 64(4):365–384

    Article  Google Scholar 

  77. Del Coz Diaz JJ, Alvarez Rabanal FP, Garcia Nieto PJ et al (2010) Sound transmission loss analysis through a multilayer lightweight concrete hollow brick wall by FEM and experimental validation. Build Environ 45(11):2373–2386

    Article  Google Scholar 

  78. Sgard FC, Atalla N, Nicolas J (2000) A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. J Acoust Soc Am 108(6):2865–2872

    Article  Google Scholar 

  79. Price AJ, Crocker MJ (1970) Sound transmission through double panels using statistical energy analysis. J Acoust Soc Am 47(3A):683–693

    Article  Google Scholar 

  80. Craik RJM (2003) Non-resonant sound transmission through double walls using statistical energy analysis. Appl Acoust 64(3):325–341

    Article  Google Scholar 

  81. Fahy FJ (1994) Statistical energy analysis: a critical overview. Philos Trans Phys Sci Eng 346(1681):431–447

    Article  Google Scholar 

  82. Vinokur RY (1990) Transmission loss of triple partitions at low frequencies. Appl Acoust 29(1):15–24

    Article  Google Scholar 

  83. Brekke A (1981) Calculation methods for the transmission loss of single, double and triple partitions. Appl Acoust 14(3):225–240

    Article  Google Scholar 

  84. Taylor RL, Govindjee S (2004) Solution of clamped rectangular plate problems. Commun Numer Methods Eng 20(10):757–765

    Article  MATH  Google Scholar 

  85. Ingard U (1959) Influence of fluid motion past a plane boundary on sound reflection, absorption, and transmission. J Acoust Soc Am 31(7):1035–1036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1.1 Appendix A

The deflection coefficients of the two panels are

$$ \left\{{\alpha}_{1, kl}\right\}={{\left[\begin{array}{cccccccccc}\hfill {\alpha}_{1,11}\hfill & \hfill {\alpha}_{1,21}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M1}\hfill & \hfill {\alpha}_{1,12}\hfill & \hfill {\alpha}_{1,22}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M2}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{MN\times 1} $$
(1.A.1)
$$ \left\{{\alpha}_{2, kl}\right\}={{\left[\begin{array}{cccccccccc}\hfill {\alpha}_{2,11}\hfill & \hfill {\alpha}_{2,21}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M1}\hfill & \hfill {\alpha}_{2,12}\hfill & \hfill {\alpha}_{2,22}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M2}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{MN\times 1} $$
(1.A.2)

The left-hand side of Eq. (1.74) represents the generalized force, where

$$ \left\{{F}_{kl}\right\}=2 j\omega {\rho}_0 I{{\left[\begin{array}{cccccccccc}\hfill {f}_{11}\hfill & \hfill {f}_{21}\hfill & \hfill \dots \hfill & \hfill {f}_{M1}\hfill & \hfill {f}_{12}\hfill & \hfill {f}_{22}\hfill & \hfill \dots \hfill & \hfill {f}_{M2}\hfill & \hfill \dots \hfill & \hfill {f}_{M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{M N\times 1} $$
(1.A.3)
$$ {\lambda}_{1, mn}^{*1}=3{\left(\frac{m}{a}\right)}^4+3{\left(\frac{n}{b}\right)}^4+2{\left(\frac{m}{a}\right)}^2{\left(\frac{n}{b}\right)}^2 $$
(1.A.4)
$$ {\Delta}_1^{*1}={\left[\!\arraycolsep4pt\begin{array}{cccccccccc}\hfill {\lambda}_{1,11}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_{1,21}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M1}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1,12}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1,22}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M2}^{*1}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M N}^{*1}\hfill \end{array}\!\!\right]}_{MN\times MN} $$
(1.A.5)
$$ {\lambda}_{1, n}^{*2}=\frac{2{n}^4}{b^4}{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.A.6)
$$ {\Delta}_1^{*2}={\left[\arraycolsep4pt\begin{array}{cccc}\hfill {\lambda}_{1,1}^{*2}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_{1,2}^{*2}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, N}^{*2}\hfill \end{array}\right]}_{MN\times MN} $$
(1.A.7)
$$ {\lambda}_1^{*3}=\frac{2}{a^4}{\left[\begin{array}{cccc}\hfill {1}^4\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {2}^4\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {M}^4\hfill \end{array}\right]}_{M\times N} $$
(1.A.8)
$$ {\Delta}_1^{*3}={\left[\arraycolsep5pt\begin{array}{lllll} 0 & {\lambda}_1^{*3} & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & 0 & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & {\lambda}_1^{*3} & 0 & \cdots & \cdots \\[3pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} & 0 \end{array}\right]}_{MN\times MN} $$
(1.A.9)
$$ {\Delta}_2^{*1}=\frac{9 ab}{4}{\left[\begin{array}{cccc}\hfill 1\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill 1\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill 1\hfill \end{array}\right]}_{MN\times MN} $$
(1.A.10)
$$ {\lambda}_2^{*2}=\frac{3 ab}{2}{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.A.11)
$$ {\Delta}_2^{*2}={\left[\begin{array}{cccc}\hfill {\lambda}_2^{*2}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_2^{*2}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_2^{*2}\hfill \end{array}\right]}_{MN\times MN} $$
(1.A.12)
$$ {\lambda}_2^{*3}=\frac{3 ab}{2}{\left[\begin{array}{cccc}\hfill 1\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill 1\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill 1\hfill \end{array}\right]}_{M\times N} $$
(1.A.13)
$$ {\Delta}_2^{*3}={\left[\arraycolsep5pt\begin{array}{lllll} 0 & {\lambda}_2^{*3} & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & 0 & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & {\lambda}_2^{*3} & 0 & \cdots & \cdots \\[3pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} & 0 \end{array}\right]}_{MN\times MN} $$
(1.A.14)
$$ {\lambda}_2^{*4}= ab{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.A.15)
$$ {\Delta}_2^{*4}={\left[\arraycolsep5pt\begin{array}{lllll} 0 & {\lambda}_2^{*4} & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} \\[4pt] {} {\lambda}_2^{*4} & 0 & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} \\[4pt] {} {\lambda}_2^{*4} & {\lambda}_2^{*4} & 0 & \cdots & \cdots \\[4pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_2^{*4} \\[4pt] {} {\lambda}_2^{*4} & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} & 0 \end{array}\right]}_{MN\times MN} $$
(1.A.16)

Using the definition of the sub-matrices presented above, one obtains

$$ \begin{aligned} {\left[{T}_{11, kl}\right]}_{MN\times MN}&=4{D}_1{\pi}^4 ab\left({\Delta}_1^{*1}+{\Delta}_1^{*2}+{\Delta}_1^{*3}\right)\\ & \quad -\left({m}_1{\omega}^2{+} j\omega {\rho}_0\frac{2\omega {e}^{2 j{k}_z H}}{k_z\left(1-{e}^{2 j{k}_z H}\right)}\right)\cdot \left({\Delta}_2^{*1}{+}{\Delta}_2^{*2}{+}{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) \end{aligned} $$
(1.A.17)
$$ {\left[{T}_{12, kl}\right]}_{MN\times MN}= j\omega {\rho}_0\frac{2\omega {e}^{j{k}_z H}}{k_z\left(1-{e}^{2 j{k}_z H}\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.A.18)
$$ {\left[{T}_{21, kl}\right]}_{MN\times MN}= j\omega {\rho}_0\frac{2\omega {e}^{j{k}_z H}}{k_z\left(1-{e}^{2 j{k}_z H}\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.A.19)
$$ \begin{aligned} {\left[{T}_{22, kl}\right]}_{MN\times MN}&=4{D}_2{\pi}^4 ab\left({\Delta}_1^{*1}+{\Delta}_1^{*2}+{\Delta}_1^{*3}\right)\\ & \quad -\left({m}_2{\omega}^2{+} j\omega {\rho}_0\frac{2\omega {e}^{2 j{k}_z H}}{k_z\left(1-{e}^{2 j{k}_z H}\right)}\right)\cdot \left({\Delta}_2^{*1}{+}{\Delta}_2^{*2}{+}{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) \end{aligned} $$
(1.A.20)

1.1.2 Appendix B

The modal coefficients of the three panels are

$$ \left\{{\boldsymbol{\alpha}}_1\right\}={{\left[\begin{array}{cccccccccc}\hfill {\alpha}_{1,11}\hfill & \hfill {\alpha}_{1,21}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M1}\hfill & \hfill {\alpha}_{1,12}\hfill & \hfill {\alpha}_{1,22}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M2}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{1, M N}\hfill \end{array}\right]}^{\mathtt{T}}}_{MN\times 1} $$
(1.B.1)
$$ \left\{{\boldsymbol{\alpha}}_2\right\}={{\left[\begin{array}{cccccccccc}\hfill {\alpha}_{2,11}\hfill & \hfill {\alpha}_{2,21}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M1}\hfill & \hfill {\alpha}_{2,12}\hfill & \hfill {\alpha}_{2,22}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M2}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{2, M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{MN\times 1} $$
(1.B.2)
$$ \left\{{\boldsymbol{\alpha}}_3\right\}={{\left[\begin{array}{cccccccccc}\hfill {\alpha}_{3,11}\hfill & \hfill {\alpha}_{3,21}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{3, M1}\hfill & \hfill {\alpha}_{3,12}\hfill & \hfill {\alpha}_{3,22}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{3, M2}\hfill & \hfill \dots \hfill & \hfill {\alpha}_{3, M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{MN\times 1} $$
(1.B.3)

The generalized forces can be written in vector form as

$$ \left\{\mathbf{F}\right\}=2 j\omega {\rho}_0 I{{\left[\begin{array}{cccccccccc}\hfill {f}_{11}\hfill & \hfill {f}_{21}\hfill & \hfill \dots \hfill & \hfill {f}_{M1}\hfill & \hfill {f}_{12}\hfill & \hfill {f}_{22}\hfill & \hfill \dots \hfill & \hfill {f}_{M2}\hfill & \hfill \dots \hfill & \hfill {f}_{M N}\hfill \end{array}\right]}^{\mathrm{T}}}_{M N\times 1} $$
(1.B.4)
$$ {\lambda}_{1, mn}^{*1}=3{\left(\frac{m}{a}\right)}^4+3{\left(\frac{n}{b}\right)}^4+2{\left(\frac{m}{a}\right)}^2{\left(\frac{n}{b}\right)}^2 $$
(1.B.5)
$$ {\Delta}_1^{*1}={\left[\begin{array}{cccccccccc}\hfill {\lambda}_{1,11}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_{1,21}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M1}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1,12}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1,22}^{*1}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M2}^{*1}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, M N}^{*1}\hfill \end{array}\right]}_{MN\times MN} $$
(1.B.6)
$$ {\lambda}_{1, n}^{*2}=\frac{2{n}^4}{b^4}{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.B.7)
$$ {\Delta}_1^{*2}={\left[\arraycolsep4pt\begin{array}{cccc}\hfill {\lambda}_{1,1}^{*2}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_{1,2}^{*2}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_{1, N}^{*2}\hfill \end{array}\right]}_{MN\times MN} $$
(1.B.8)
$$ {\lambda}_1^{*3}=\frac{2}{a^4}{\left[\begin{array}{cccc}\hfill {1}^4\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {2}^4\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {M}^4\hfill \end{array}\right]}_{M\times N} $$
(1.B.9)
$$ {\Delta}_1^{*3}={\left[\arraycolsep5pt\begin{array}{lllll} 0 & {\lambda}_1^{*3} & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & 0 & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & {\lambda}_1^{*3} & 0 & \cdots & \cdots \\[3pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_1^{*3} \\[3pt] {} {\lambda}_1^{*3} & {\lambda}_1^{*3} & \cdots & {\lambda}_1^{*3} & 0 \end{array}\right]}_{MN\times MN} $$
(1.B.10)
$$ {\Delta}_2^{*1}=\frac{9 ab}{4}{\left[\begin{array}{cccc}\hfill 1\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill 1\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill 1\hfill \end{array}\right]}_{MN\times MN} $$
(1.B.11)
$$ {\lambda}_2^{*2}=\frac{3 ab}{2}{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.B.12)
$$ {\Delta}_2^{*2}={\left[\arraycolsep4pt\begin{array}{cccc}\hfill {\lambda}_2^{*2}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill {\lambda}_2^{*2}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill {\lambda}_2^{*2}\hfill \end{array}\right]}_{MN\times MN} $$
(1.B.13)
$$ {\lambda}_2^{*3}=\frac{3 ab}{2}{\left[\begin{array}{cccc}\hfill 1\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill 1\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill 1\hfill \end{array}\right]}_{M\times N} $$
(1.B.14)
$$ {\Delta}_2^{*3}={\left[\arraycolsep5pt\begin{array}{lllll} 0 & {\lambda}_2^{*3} & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & 0 & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & {\lambda}_2^{*3} & 0 & \cdots & \cdots \\[3pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_2^{*3} \\[3pt] {} {\lambda}_2^{*3} & {\lambda}_2^{*3} & \cdots & {\lambda}_2^{*3} & 0 \end{array}\right]}_{MN\times MN} $$
(1.B.15)
$$ {\lambda}_2^{*4}= ab{\left[\arraycolsep4pt\begin{array}{ccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \cdots \hfill & \hfill \cdots \hfill \\ {}\hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \cdots \hfill & \hfill \ddots \hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill \cdots \hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]}_{M\times N} $$
(1.B.16)
$$ {\Delta}_2^{*4}={\left[\arraycolsep5pt \begin{array}{lllll} 0 & {\lambda}_2^{*4} & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} \\[3pt] {} {\lambda}_2^{*4} & 0 & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} \\[3pt] {} {\lambda}_2^{*4} & {\lambda}_2^{*4} & 0 & \cdots & \cdots \\[3pt] {} \cdots & \cdots & \cdots & \ddots & {\lambda}_2^{*4} \\[3pt] {} {\lambda}_2^{*4} & {\lambda}_2^{*4} & \cdots & {\lambda}_2^{*4} & 0 \end{array}\right]}_{MN\times MN} $$
(1.B.17)

In the context of the above sub-matrices, the elemental matrices can be derived as

$$ \begin{aligned}{\left[{\mathbf{T}}_{11}\right]}_{MN\times MN}&=4{D}_1{\pi}^4 ab\left({\Delta}_1^{*1}+{\Delta}_1^{*2}+{\Delta}_1^{*3}\right)\\ {}& \quad - \left({m}_1{\omega}^2+ j\omega {\rho}_0\frac{2\omega {e}^{2 j{k}_z{H}_1}}{k_z\left(1-{e}^{2 j{k}_z{H}_1}\right)}\right)\cdot \left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right)\end{aligned} $$
(1.B.18)
$$ {\left[{\mathbf{T}}_{12}\right]}_{MN\times MN}= j\omega {\rho}_0\frac{2\omega {e}^{j{k}_z{H}_1}}{k_z\left(1-{e}^{2 j{k}_z{H}_1}\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.B.19)
$$ {\left[{\mathbf{T}}_{21}\right]}_{MN\times MN}= j\omega {\rho}_0\frac{2\omega {e}^{j{k}_z{H}_1}}{k_z\left(1-{e}^{2 j{k}_z{H}_1}\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.B.20)
$$ {\fontsize{8.5}{10}\selectfont{\begin{aligned}[b] {\left[{\mathbf{T}}_{22}\right]}_{MN\times MN}&=4{D}_2{\pi}^4 ab\left({\Delta}_1^{*1}+{\Delta}_1^{*2}+{\Delta}_1^{*3}\right)\\ {}& \quad +\left(\!{-}{m}_2{\omega}^2{+}\frac{\omega^2{\rho}_0\left({e}^{j{k}_z\left({H}_1{-}{H}_2\right)}-{e}^{j{k}_z\left({H}_1+{H}_2\right)}\right)}{k_z\left(-1+{e}^{2 j{k}_z{H}_1}\right) \sin \left({k}_z\left({H}_1-{H}_2\right)\right)}\!\right)\left({\Delta}_2^{*1}{+}{\Delta}_2^{*2}{+}{\Delta}_2^{*3}{+}{\Delta}_2^{*4}\right)\end{aligned} }} $$
(1.B.21)
$$ {\left[{\mathbf{T}}_{23}\right]}_{MN\times MN}=\frac{\omega^2{\rho}_0}{k_z \sin \left({k}_z\left({H}_1-{H}_2\right)\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.B.22)
$$ {\left[{\mathbf{T}}_{32}\right]}_{MN\times MN}=\frac{\omega^2{\rho}_0}{k_z \sin \left({k}_z\left({H}_1-{H}_2\right)\right)}\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) $$
(1.B.23)
$$ \begin{aligned} {\left[{\mathbf{T}}_{33}\right]}_{MN\times MN}&=4{D}_3{\pi}^4 ab\left({\Delta}_1^{*1}+{\Delta}_1^{*2}+{\Delta}_1^{*3}\right)\\ & \quad -\left({m}_3{\omega}^2+\frac{\omega^2{\rho}_0{e}^{- j{k}_z\left({H}_1-{H}_2\right)}}{k_z \sin \left({k}_z\left({H}_1-{H}_2\right)\right)}\right)\left({\Delta}_2^{*1}+{\Delta}_2^{*2}+{\Delta}_2^{*3}+{\Delta}_2^{*4}\right) \end{aligned} \\[-12pt] $$
(1.B.24)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, T., Xin, F. (2014). Transmission of Sound Through Finite Multiple-Panel Partition. In: Vibro-Acoustics of Lightweight Sandwich Structures. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55358-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55358-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55357-8

  • Online ISBN: 978-3-642-55358-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics