Skip to main content

Hierarchical Clustering Based Web Service Discovery

  • Conference paper

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 426)

Abstract

This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.

Keywords

  • Web service discovery
  • semantic analysis
  • hierarchical clustering
  • service matching
  • vector space model
  • Web service description

References

  1. Thomas, E.: Service-oriented Architecture Concepts, Technology, and Design, pp. 56–80. China Machine Press (2007) (in Chinese)

    Google Scholar 

  2. Popova, G., Nedeva, V.: Web Services-an Instrument to Resolve the Problems of Information Systems Integration. Rakia Journal of Sciences, 61–64 (2006)

    Google Scholar 

  3. Yue, K., Wang, X., Zhou, A.: The Core Support Technology of Web Service: Review. Journal of Software 15(3), 428–440 (2004) (in Chinese)

    Google Scholar 

  4. Liao, Z., Liu, J., Liu, Y., Liu, H.: Review of Web Service Discovery Technology. Journal of The China Society for Scientific and Technical Information 27(2), 186–192 (2008) (in Chinese)

    Google Scholar 

  5. Niu, W., Chang, L., Wang, X., Han, X., Shi, Z.: Semantic Web Service Discovery Based on Context and Action Reasoning. Pattern Recognition and Artificial Intelligence 23(1), 65–71 (2010) (in Chinese)

    Google Scholar 

  6. Ertel, W.: Introduction to artificial intelligence. Springer (2011)

    Google Scholar 

  7. He, L., Wu, L., Cai, Y.: Summary of Clustering Algorithm in Data Mining. Computer Application Research, 10–13 (2007) (in Chinese)

    Google Scholar 

  8. Hu, Q., Ye, N., Zhu, M.: Summary of Clustering Algorithm in Data Mining. Computer and Digital Engineering (2007) (in Chinese)

    Google Scholar 

  9. Liang, B.: Detection of Top-n Global Outliers in Datasets Based on Hierarchical Clustering. Computer Engineering and Applications 48(9), 101–103 (2012)

    Google Scholar 

  10. Rajagopal, S., Selvi, T.: Semantic grad service discovery approach using clustering of service ontologies. In: Proceedings of IEEE TENCON 2006, pp. 1–4 (2006)

    Google Scholar 

  11. Sudha, R., Yousub, H., Zhao, H.: A Clustering Based Approach for Facilitating Semantic Web Service Discovery. In: Proceedings of the 15th Annual Workshop on Information Technologies & Systems, Las Vegas, USA (2006)

    Google Scholar 

  12. Sun, P., Jiang, C.: Process Model-oriented Semantic Web Service Discovery Using Service Clustering Optimization. Journal of Computers 31(8), 1340–1353 (2008) (in Chinese)

    Google Scholar 

  13. Wang, L., Hu, X.: Web Clustering and Composition based on P2P. Computer Engineering 35(17), 7–10 (2009) (in Chinese)

    Google Scholar 

  14. Xu, X., Chen, J., Wu, Y.: Web Service Discovery Method based on Clustering Optimization. Computer Engineering 37(9), 68–70 (2011)

    Google Scholar 

  15. Yahyaoui, H., Almulla, M., Own, H.: A Novel Non-functional Matchmaking Approach between Fuzzy User Queries and Real World Web Services Based on Rough Sets. Future Generation Computer Systems (2014)

    Google Scholar 

  16. Gao, H., Stucky, W., Liu, L.: Web Services Classification Based on Intelligent Clustering Techniques. In: Proceedings of 2009 International Forum on Information Technology and Applications, pp. 242–245 (2009)

    Google Scholar 

  17. Ma, Y., Jin, B., Feng, Y.: Semantic Web service Dynamic Discovery based on Evolution Distributed Ontology. Journal of Computers 28(4), 603–614 (2005) (in Chinese)

    Google Scholar 

  18. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics, pp. 133–138 (1994)

    Google Scholar 

  19. Qing, Y., Gong, L., Xiang, L.: Text Clustering Algorithm based on Vector Space Model. Computer Engineering 34(18), 39–44 (2008)

    Google Scholar 

  20. Hamadi, R., Benatallah, B.: A Petri Net based Model for Web Service Composition. In: Proc. of the 14th Australasian Database Conference on Research and Practice in Information Technology, pp. 19–200 (2003)

    Google Scholar 

  21. Jing, P., Dong, Y.: A Text Clustering Algorithm Based on Semantic Inner Product Space Model. Journal of Computer 30(8), 1354–1362 (2007)

    Google Scholar 

  22. Liu, K., Benfell, A.: Software and Data Technologies Communications in Computer and Information Science.  50, 18–32 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 IFIP International Federation for Information Processing

About this paper

Cite this paper

Gao, H., Wang, S., Sun, L., Nian, F. (2014). Hierarchical Clustering Based Web Service Discovery. In: Liu, K., Gulliver, S.R., Li, W., Yu, C. (eds) Service Science and Knowledge Innovation. ICISO 2014. IFIP Advances in Information and Communication Technology, vol 426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55355-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55355-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55354-7

  • Online ISBN: 978-3-642-55355-4

  • eBook Packages: Computer ScienceComputer Science (R0)