Skip to main content

3 Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota

Part of the The Mycota book series (volume 7A)

Abstract

This is an account of the molecular systematics and phylogeny of the osmotrophic stramenopile lineages traditionally studied by mycologists, which include the Labyrinthulomycota, Hyphochytriomycota, and Oomycota. All three groups produce zoospores with a mastigonate anterior flagellum, and all fall within Kingdom Straminipila, which is part of the larger stramenopile/alveolate/rhizaria superkingdom. The labyrinthulids and thraustochytrids are part of the same monophyletic clade as the bicoecids, protermonads, and opalinids, whereas the hyphochytrids and oomycetes are part of a sister clade, together with all the ochrophyte algae and some bacteriotrophic flagellates. Both are believed to have evolved from a common mixotrophic flagellate ancestor. The Labyrinthulomycota contains two order-level clades, the Thraustochytridiales (encompassing a half dozen or so thraustochytrid families and Diplophrys like protists) and the Labyrinthulales (containing the Labyrinthulaceae and Aplanochytridiaceae). The Hyphochytriomycota (based on sequence data for Hyphochytrium and Rhizochytrium) fall into a well-supported monophyletic clade that sits between the Ochrophyta and the Oomycota, although recent unpublished evidence suggests that the Anisolpidiaceae should be excluded. The Oomycota are the largest and most complex stramenopile clade. Four early-diverging order-level clades (Eurychasmales, Haptoglossales, Olpidiopsidales s.lat., and Haliphthorales) are recognized but have not been assigned to classes. Nearly all early-diverging genera are marine organisms that are parasites of algae, acheleminthes, or crustaceans. The later-diverging oomycetes are mostly found in freshwater and terrestrial ecosystems and fall into two class-level clades: the Saprolegniomycetes and Peronosporomycetes. Both have been split into three orders (Atkinsiellales, Leptomitales s. lat., and Saprolegniales for the former and Rhipidiales, Albuginales, and Peronosporales s. lat. for the latter). Morphological characteristics associated with zoosporogenesis and sexual reproduction are discussed in relation to our revised phylogenetic framework. Finally, a possible evolutionary timeline based on both molecular and fossil evidence is discussed.

Keywords

  • Downy Mildew
  • Sister Clade
  • Phytophthora Species
  • Anterior Flagellum
  • White Blister

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-55318-9_3
  • Chapter length: 59 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-55318-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16

References

  • Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) A revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    PubMed Central  PubMed  Google Scholar 

  • Andersen RA, Barr DJS, Lynn DH, Melkonian M, Moestrup O, Sleigh MA (1991) Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164:1–8

    Google Scholar 

  • Anderson OR, Cavalier-Smith T (2012) Ultrastructure of Diplophyrs parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozool 51:291–304

    Google Scholar 

  • Anderson SA, Stewart A, Allen GT (1995) Pseudosphaerita euglenae, a fungal parasite of Euglena spp. in the Mangere oxidation ponds, Auckland, New Zealand. N Z J Mar Freshw Res 29:371–379

    Google Scholar 

  • Arcate JM, Karp MA, Nelson EB (2006) Diversity of peronosporomycete (oomycete) communities associated with the rhizosphere of different plant species. Microb Ecol 51:36–50

    PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution and metabolism. Science 306:79–86

    CAS  PubMed  Google Scholar 

  • Ayers WA, Lumsden RD (1977) Mycoparasitism of oospores of Pythium and Aphanomyces species by Hyphochytrium catenoides. Can J Microbiol 23:38–44

    Google Scholar 

  • Azevedo C, Corral L (1997) Some ultrastructural observations of a thraustochytrid (Protoctista, Labyrinthulomycota) from clam Ruditapes decussatus (Mollusca, Bivalvia). Dis Aquat Organ 31:73–78

    Google Scholar 

  • Bahnweg G, Sparrow FK (1974) Four new species of Traustochytrium from antarctic regions, with notes on the distribution of zoosporic fungi in the antarctic marine ecosystems. Am J Bot 61:754–766

    Google Scholar 

  • Bala K, Robideau G, Lévesque A, de Cock WAM, Abad ZG, Lodhi AM, Coffey MD (2010) Phytopythium. Persoonia 24:136–137

    Google Scholar 

  • Barr DJS (1981) The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems 14:359–370

    CAS  PubMed  Google Scholar 

  • Barr DJS, Allan PME (1985) A comparison of the flagellar apparatus in Phytophthora, Saprolegnia, Thraustochytrium, and Rhizidiomyces. Can J Bot 63:138–154

    Google Scholar 

  • Barr DJS, Désaulniers NL (1987) The ultrastructure of Lagena radicola zoospores, including a comparison with the primary and secondary Saprolegnia zoospores. Can J Bot 65:2161–2176

    Google Scholar 

  • Barr DJS, Désaulniers NL (1989) The flagellar apparatus of the oomycetes and hyphochytriomycetes. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Oxford University Press, Oxford, pp 343–355

    Google Scholar 

  • Barr DJS, Désaulniers NL (1990) The life cycle Lagena radicola, an oomycetous parasite of wheat roots. Can J Bot 68:2112–2118

    Google Scholar 

  • Barrett (1912) Development and sexuality in Olpidiopsis (Cornu) Fisher. Ann Bot 26:209–238

    Google Scholar 

  • Barron (1976) Nematophagous fungi: three new species of Myzocytium. Can J Bot 22:752–762

    CAS  Google Scholar 

  • Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborne JG (ed) Phytochemical phylogeny. Academic, New York, pp 81–103

    Google Scholar 

  • Bartnicki-Garcia S (1996) The hypha: the unifying thread of the fungal kingdom. In: Sutton BC (ed) A century of mycology. Cambridge University Press, Cambridge, pp 105–133

    Google Scholar 

  • Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RH, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JD, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora genome. Science 330:1549–1551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beakes GW (1981) Ultrastructural aspects of oospore differentiation. In: Hohl H, Turian G (eds) The fungal spore: morphogenetic controls. Academic, London and New York, pp 71–94

    Google Scholar 

  • Beakes GW (1983) A comparative account of cyst coat ontogeny in saprophytic and fish-lesion isolates (pathogenic) of the Saprolegnia diclina-parasitica complex. Can J Bot 61:603–625

    Google Scholar 

  • Beakes GW (1987) Oomycete phylogeny: ultrastructural perspectives. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 405–421

    Google Scholar 

  • Beakes GW (1989) Oomycete fungi: their phylogeny and relationship to chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Oxford University Press, Oxford, pp 325–342

    Google Scholar 

  • Beakes GW (1994) Sporulation of lower fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, pp 337–366

    Google Scholar 

  • Beakes GW, Glockling SL (1998) Injection tube differentiation in gun cells of a Haptoglossa species which infects nematodes. Fungal Genet Biol 24:45–68

    PubMed  Google Scholar 

  • Beakes GW, Glockling SL (2000) An ultrastructural analysis of organelle arrangement during gun (infection) cell differentiation in the nematode parasite Haptoglossa dickii. Mycol Res 104:1258–1269

    Google Scholar 

  • Beakes GW, Glockling SL (2002) A comparative fine-structural study of dimorphic infection cells in the nematophagous parasite, Haptoglossa erumpens. Fungal Genet Biol 37:250–262

    PubMed  Google Scholar 

  • Beakes GW, Sekimoto S (2009) The evolutionary phylogeny of oomycetes—insights gained from studies of holocarpic parasites of algae and invertebrates. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 1–24

    Google Scholar 

  • Beakes GW, Singh H, Dickinson CH (1982) Ultrastructure of the host-pathogen interface of Peronospora viciae in cultivars of pea which show different susceptibilities. Plant Pathol 31:343–354

    Google Scholar 

  • Beakes GW, Wood SE, Burr AW, Hardham AR (1995) Application of spore surface features in defining taxonomic versus ecological groups in Oomycete fungi. Can J Bot 73(suppl):701–711

    Google Scholar 

  • Beakes GW, Glockling SL, James TY (2006) The diversity of oomycete pathogens of nematodes and its implications to our understanding of oomycete phylogeny. In: Meyer W, Pearce C (eds) Proceedings of the 8th International Mycological Congress, Medimond, Bologna, Italy, pp 7–12

    Google Scholar 

  • Beakes GW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 249:3–19

    PubMed  Google Scholar 

  • Bedard JEJ, Schurko AM, de Cock AWAM, Klassen GR (2006) Diversity and evolution of 5S rRNA gene family and organization in Pythium. Mycol Res 110:86–95

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hedges SB, Hackett D (2009) Eukaryotes. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, New York, pp 116–120

    Google Scholar 

  • Blackwell WH (2010) The enigmatic genus Pythiella (Oomycota). Phytologia 92:304–311

    Google Scholar 

  • Blair JE, Coffey MD, Park S-Y, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45:266–277

    CAS  PubMed  Google Scholar 

  • Bongiorni L (2012) Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments. In: Raghu-Kumar C (ed) Biology of marine fungi. Prog Mol Subcell Biol 53:1–13

    Google Scholar 

  • Bortnick RN, Powell MJ, Bangert TN (1985) Zoospore fine-structure of the parasite Olpidiopsis saprolegniae (Oomycetes, Lagenidiales). Mycologia 77:861–879

    Google Scholar 

  • Bower SM (1987) Labyrinthuloides haliotidis n. sp. (Protozoa, Layrinthulomorpha), a pathogenic parasite of small juvenile abalone in a British Columbia mariculture facility. Can J Zool 65:2013–2020

    Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Google Scholar 

  • Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors and all that jazz. Curr Opin Plant Biol 15:1–10

    Google Scholar 

  • Brasier C, Weber J (2010) Sudden larch death. Nature 466:824–825

    CAS  PubMed  Google Scholar 

  • Briard M, Dutertre M, Rouxel F, Brygoo Y (1995) Ribosomal DNA sequence divergence within the Pythiaceae. Mycol Res 99:1119–1127

    CAS  Google Scholar 

  • Brown JW, Sorhannus U (2010) A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS One 5(9):e12759. doi:10.1371/journal.pone.0012759

    PubMed Central  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    PubMed Central  PubMed  Google Scholar 

  • Burr AW, Beakes GW (1994) Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181:142–163

    Google Scholar 

  • Canter HM (1950) Studies on British chytrids IX. Anisolpidium stigeoclonii (De Wildeman) n. comb. Trans Br Mycol Soc 33:335–344

    Google Scholar 

  • Canter HM, Dick MW (1994) Eurychasmopsis multisecunda gen. et sp. nov., a parasite of the suctorian Podophrya sp. (Ciliata). Mycol Res 98:105–117

    Google Scholar 

  • Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress Limited, Bristol, pp 309–347

    Google Scholar 

  • Cavalier-Smith T, Chao EEY (2006) Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). J Mol Evol 62:388–420

    CAS  PubMed  Google Scholar 

  • Cerenius L, Soderhall K, Persson M, Ajaxon R (1988) The crayfish plague fungus Aphanomyces astaci—diagnosis, isolation and pathobiology. Freshw Crayfish 7:131–144

    Google Scholar 

  • Choi Y-J, Jong S-B, Shin H-D (2005) A reconsideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol Res 109:842–848

    Google Scholar 

  • Choi Y-J, Jong S-B, Shin H-D (2006) Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mt DNA sequences. Mol Pylogenet Evol 40:400–409

    CAS  Google Scholar 

  • Choi Y-J, Shin H-D, Hong S-B, Thines M (2007) Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Divers 27:11–34

    Google Scholar 

  • Choi Y-J, Shin H-D, Ploch S, Thines M (2008) Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycol Res 112:1327–1334

    CAS  PubMed  Google Scholar 

  • Choi Y-J, Thines M, Shin H-D (2011a) A new perspective on the evolution of white blister rusts: Albugo s.str. (Albuginales, Oomycota) is not restricted to Brassicales but also present on Fabales. Org Divers Evol 11:192–199

    Google Scholar 

  • Choi Y-J, Shin H-D, Ploch S, Thines M (2011b) Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol 115:598–607

    PubMed  Google Scholar 

  • Clay RP, Benhamou N, Fuller MS (1991) Ultrastructural detection of polysaccharides in the cell walls of two members of the Hyphochytriales. Mycol Res 95:1057–1064

    CAS  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    CAS  PubMed  Google Scholar 

  • Coffey MD (1975) Ultrastructural features of the haustorial apparatus of the white blister rust Albugo candida. Can J Bot 53:1285–1299

    Google Scholar 

  • Coffey MD, Wilson U (1983) An ultrastructural study of the late-blight fungus Phytophthora infestans and its interaction with the foliage of two potato cultivars possessing different levels of general (field) resistance. Can J Bot 61:2669–2685

    Google Scholar 

  • Coffey MD, Huss J, Peiman M. (2011) Molecular phylogeny of the marine Halophytophthora species: a work in progress. http://www.phytophthoradb.org/pdf/O11Coffey230.pdf. Accessed Aug 2012

  • Coker WC (1923) The saprolegniaceae with notes on other water molds. University of South Carolina Press, Chapel Hill, 201 pp

    Google Scholar 

  • Collier J (2012) Why sequence four Labrinthulomycete species? JGI DOE Joint Genome Institute. http://www.jgi.doe.gov/sequencing/why/labrinthulomycete.html. Accessed 23 Sept 2012

  • Cook KL, Hudspeth DSS, Hudspeth MES (2001) A cox2 phylogeny of representative marine Peronosporomycetes (Oomycetes). Nova Hedwigia 122:231–243

    Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    CAS  PubMed  Google Scholar 

  • Cooney EW, Barr DJS, Barstow WE (1985) The ultrastructure of the zoospore of Hyphochytrium catenoides. Can J Bot 63:497–505

    Google Scholar 

  • Couch J (1935) A new saprophytic species of Lagenidium with notes on other species. Mycologica 27:376–387

    Google Scholar 

  • Craigie JS, Correa JA (1996) Etiology of infections diseases of cultivated Chondrus crispus (Gigartinales, Rhodophyta). Hydrobiologia 327:97–104

    Google Scholar 

  • Craven KD, Peterson PD, Windham DE, Mitchell TK, Martin SB (2005) Molecular identification of the turf grass rapid blight pathogen. Mycologia 97:160–166

    CAS  PubMed  Google Scholar 

  • Davidson JM, Werres S, Garbelotto M, Hansen EM, Rizzo DM (2003) Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Prog. doi:10.1094/PHP-2003-0707-01-DG

    Google Scholar 

  • de Cock AWAM, Abad G, Lévesque A, Robideae G, Brouwer H (2012). Pythium: morphological taxonomy after the molecular revision. http://www.phytopthoradb.org/pdf/O31DeCock.pdf

  • Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KSW, Artiguenave F, Jaillon O, Aury J-M, Delbac F, Wincker P, Vivarès CP, El Alaoui H (2011) Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 12:R29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dick MW (1969) Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae and Pythiaceae I. Sexual reproduction. New Phytol 68:751–755

    Google Scholar 

  • Dick MW (1973a) Leptomitales. In: Ainsworth CG, Sparrow FK, Sussman AL (eds) The fungi, an advanced treatise, vol IVb. Academic, New York, pp 145–158

    Google Scholar 

  • Dick MW (1973b) Saprolegniales. In: Ainsworth CG, Sparrow FK, Sussman AL (eds) The fungi, an advanced treatise, vol IVb. Academic, New York, pp 113–144

    Google Scholar 

  • Dick MW (1976) The ecology of aquatic phycomycetes. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Press, London, pp 513–542

    Google Scholar 

  • Dick MW (1986) A new family and genus for two taxa previously assigned to Apodachlyella completa (JE Humphrey) H Indoh (Peromycetidae: Leptomitales). Bot J Linn Soc 93:225–229

    Google Scholar 

  • Dick MW (1990) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman D (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 661–685

    Google Scholar 

  • Dick MW (1997) The Myzocytiopsidaceae. Mycol Res 101:878–882

    Google Scholar 

  • Dick MW (1998) The species and systematic position of Crypticola in the Peronosporomycetes, and new names for the genus Halocrusticida and species therein. Mycol Res 102:1062–1066

    Google Scholar 

  • Dick MW (2001a) Straminipilous fungi. Kluwer, Dordrecht

    Google Scholar 

  • Dick MW (2001b) Oomycota. In: McLaughlin D, McLaughlin E, Lemke CA (eds) The Mycota VII Part A. Systematics and evolution. Springer, Berlin, pp 48–72

    Google Scholar 

  • Dick MW, Wong PTW, Clark G (1984) The identity of the oomycete causing “Kikuyu Yellows”, with a reclassification of the downy mildews. Bot J Linn Soc 89:171–197

    Google Scholar 

  • Dick MW, Croft BJ, Magary RC, de Cock AWAM, Clark G (1988) A new genus of the Verrucalvaceae (Oomycetes). Bot J Linn Soc 99:97–113

    Google Scholar 

  • Dick MW, Vick MC, Gibbings JG, Hedderson TA, Lopez Lastra CC (1999) 18S rDNA for species of Leptolegnia and other Peronosporomycetes: justification of the subclass taxa Saprolegniomycetidae and Peronosporomycetidae and division of the Saprolegniaceae sensu lato into the Leptolegniaceae and Saprolegniaceae. Mycol Res 103:1119–1125

    CAS  Google Scholar 

  • Diéguez-Uribeondo J, Garcia MA, Cerenius LT, Kozubikova E, Ballesteros I, Windels C, Weiland J, Kator H, Soderhall K, Martın MP (2009) Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (Oomycetes). Fungal Genet Biol 46:365–376

    PubMed  Google Scholar 

  • Diéz B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    PubMed Central  PubMed  Google Scholar 

  • Diggles BK (2001) A mycosis of juvenile spiny rock lobster, Jasus edwardsii (Hutton 1875) caused by Haliphthoros sp., and possible methods of chemical control. J Fish Dis 24:99–110

    Google Scholar 

  • Domas A, Jaronski S, Hanton WK (1986) The zoospore and flagellar mastigonemes of Lagenidium giganteum (oomycetes, Lagenidiales). Mycologia 78:810–817

    Google Scholar 

  • Domergue F, Abbadi A, Heinz E (2005) Relief for fish stocks: oceanic fatty acids in transgenic oilseeds synthesis. Trends Plant Sci 10:112–116

    CAS  PubMed  Google Scholar 

  • Dorrell RG, Smith AG (2011) Do red and green make brown? Perspectives on plastid acquisitions within Chromalveolates. Eukaryot Cell 10:856–868. doi:10.1128/EC.00326-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douhan GW, Olsen MW, Herrell A, Winder C, Wong F, Entwistle K (2009) Genetic diversity in Labyrinthula terrestris, a newly emergent plant pathogen, and the discovery of new Labyrinthulid organism. Mycol Res 113:1192–1199

    CAS  PubMed  Google Scholar 

  • Drechsler C (1940) Three fungi destructive to free-living terricolous nematodes. J Wash Acad Sci 30:240–254

    Google Scholar 

  • Drechsler C (1960) Two root rot fungi closely related to Pythium ultimum. Sydowia 14:107–114

    Google Scholar 

  • Dykova I, Fiala I, Dvorakova H, Peckova H (2008) Living together: the marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labyrinthula sp. Eur J Protistol 44:308–316

    PubMed  Google Scholar 

  • Dykstra MJ, Porter D (1984) Diplophrys marina, a new scale forming marine protist with labyrinthulid affinities. Mycologia 76:626–632

    Google Scholar 

  • Fell JW, Master IM (1975) Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Can J Bot 53:2908–2922

    Google Scholar 

  • Förster H, Cummings MP, Coffey MD (2000) Phylogenetic relationships of Phytophthora species based on ribosomal ITS I DNA sequence analysis with emphasis on Waterhouse groups V and VI. Mycol Res 104:1055–1061

    Google Scholar 

  • Frances SP, Sweeney AW, Humber RA (1989) Crypticola clavulifera gen. et sp. nov and Lagenidium giganteum: oomycetes pathogenic for dipterans infesting leaf axils in Australian rain forest. J Invertebr Pathol 54:103–111

    CAS  PubMed  Google Scholar 

  • Fuller MS (1990) Phylum Hyphochytriomycota. In: Corliss JO, Margulies L, Melkonian M (eds) Handbook of protoctista. Jones and Bartlett, New York

    Google Scholar 

  • Fuller MS (2001) Hyphochytriomycota. In: McLaughlin D, McLaughlin E, Lemke CA (eds) The Mycota VII. Part A: systematics and evolution. Springer, Berlin, pp 74–80

    Google Scholar 

  • Fuller MS, Reichle R (1965) The zoospore and early development of Rhizidiomyces apophysatus. Mycologia 57:946–961

    Google Scholar 

  • Gachon CMM, Strittmatter M, Muller DG, Kleintech J, Kupper FC (2009) Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal. Appl Environ Microbiol 75:322–328. doi:10.1128/AEM.01885-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • García-Blázquez G, Göker M, Voglmayr H, Martin MP, Telleria MT, Oberwinkler F (2008) Phylogeny of Peronospora parasitic on Fabaceae based on ITS sequences. Mycol Res 112:502–512

    PubMed  Google Scholar 

  • Gaulin E, Jacquet C, Bottin A, Dumas B (2007) Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol 8:539–548

    PubMed  Google Scholar 

  • Gaulin E, Madoui A-M, Bottin A, Jacquet C, Mathe C, Couloux A, Wincker P, Dumas B (2008) Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways. PLoS One 4:e1723

    Google Scholar 

  • Gleason F (1976) The physiology of lower freshwater fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Press, London, pp 543–572

    Google Scholar 

  • Gleason FH, Letcher PM, Evershed N, McGee PA (2009) Recovery of growth of Hyphochytrium catenoides after exposure to environmental stress. J Eukaryot Microbiol 55:351–354

    Google Scholar 

  • Glockling SL, Beakes GW (2000a) A review of the biology and infection strategies of biflagellate zoosporic parasites of nematodes. Fungal Divers 4:1–20

    Google Scholar 

  • Glockling SL, Beakes GW (2000b) An ultrastructural study of sporidium formation during infection of a rhabditid nematode by large gun cells of Haptoglossa heteromorpha. J Invertebr Pathol 76:208–215

    CAS  PubMed  Google Scholar 

  • Glockling SL, Beakes GW (2000c) The ultrastructure of the dimorphic infection cells of Haptoglossa heteromorpha illustrates the developmental plasticity of infection apparatus structures in a nematode parasite. Can J Bot 78:1095–1107

    Google Scholar 

  • Glockling SL, Beakes GW (2001) Two new species of Haptoglossa from N.E. England, H. northumbrica and H. polymorpha. Bot J Linn Soc 136:329–338

    Google Scholar 

  • Glockling SL, Beakes GW (2006a) An ultrastructural study of development and reproduction in the nematode parasite Myzocytiopsis vermicola. Mycologia 98:7–21

    Google Scholar 

  • Glockling SL, Beakes GW (2006b) Structural and developmental studies of Chlamydomyzium oviparasiticum from Rhabditis neamotes in culture. Mycol Res 110:1119–1126

    PubMed  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, Lecleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA 108:4352–4357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Göker M, Voglmayr H, Riethmüller A, Weiss M, Oberwinkler F (2003) Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 81:672–683

    Google Scholar 

  • Göker M, Riethmüller A, Voglmayr H, Weiss M, Oberwinkler F (2004) Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Prog 3:83–94

    Google Scholar 

  • Göker M, Voglmayr H, Riethmüller A, Oberwinkler F (2007) How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet Biol 44:105–122

    PubMed  Google Scholar 

  • Gotelli D, Hanson LC (1987) An ultrastructural investigation of the zoospore of Sapromyces androgynus (Oomycetes, Lagenidiales). Mycologia 78:810–817

    Google Scholar 

  • Grenville-Briggs L, Gachon CM, Strittmater M, Sterck L, Kupper FC, van West P (2011) A molecular insight into algal-oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii. PLoS One 6:e24500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gubler F, Hardham AR (1988) Secretion of adhesive material during encystment of Phytophthora cinnamomi zoospores characterized by immunogold labeling with monoclonal antibodies to components of peripheral vesicles. J Cell Sci 90:225–235

    Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Boulben S, Moon SY, van der Staay S, Vaulot D (1999) Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150:383–398

    CAS  PubMed  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma LJ, MacLean D, Chibucos MC, McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O'Neill K, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    CAS  PubMed  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Mol Biol Evol 24:1702–1713

    CAS  PubMed  Google Scholar 

  • Hakariya M, Masuyama N, Saikawa M (2002) Shooting of sporidium by “gun” cells in Haptoglossa heterospora and H. zoospora and secondary zoospore formation in H. zoospora. Mycoscience 43:119–125

    Google Scholar 

  • Hakariya M, Hirose D, Tokumasu S (2007) A molecular phylogeny of Haptoglossa species, terrestrial Peronosporomycetes (oomycetes) endoparasitic on nematodes. Mycoscience 48:169–175

    CAS  Google Scholar 

  • Hakariya M, Hirose D, Tokumasu S (2009) Molecular phylogeny of terrestrial holocarpic endoparasitic Peronosporomycetes Haptoglossa spp. inferred from 18S rDNA. Mycoscience 50:130–136

    CAS  Google Scholar 

  • Hallett IC, Dick MW (1986) Fine structure of zoospore cyst ornamentation in the Saprolegniaceae and Pythiaceae. Trans Br Mycol Soc 86:457–463

    Google Scholar 

  • Hardham AR (1987) Microtubules and the flagellar apparatus in zoospores and cysts of the fungus Phytophthora cinnamomi. Protoplasma 137:109–124

    Google Scholar 

  • Hardham AR (2005) Pathogen profile: Phytophthora cinnamomi. Mol Plant Pathol 6:598–604

    Google Scholar 

  • Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. Raghukumar C (ed) Biology of marine fungi. Prog Mol Subcell Biol 53:15–52

    Google Scholar 

  • Hatai K, Bian BZ, Baticados MCL, Egusa S (1980) Studies on the fungal diseases in crustaceans. II Haliphthoros phillippinensis sp. nov. isolated from cultivated larvae of the jumbo tiger prawn (Penaseus monodon). Trans Mycol Soc Jpn 21:47–55

    Google Scholar 

  • Hatai K, Rhoobunjongde W, Wada S (1992) Haliphthoros milfordensis isolated from gills of juvenile kuruma prawn (Penaeus japonicus) with black gill disease. Trans Mycol Soc Jpn 33:185–192

    Google Scholar 

  • Hausner G, Belkhiri A, Klassen GR (2000) Phylogenetic analysis of the small ribosomal subunit RNA gene of the hyphochytrid Rhizidiomyces apophysatus. Can J Bot 78:124–128

    CAS  Google Scholar 

  • Held AA (1981) Rozella and Rozellopsis: naked endoparasitic fungi which dress-up as their hosts. Bot Rev 47:451–555

    Google Scholar 

  • Heller A, Thines M (2009) Evidence for the importance of enzymatic digestion of epidermal walls during subepidermal sporulation and pustule opening in white blister rusts (Albuginaceae). Mycol Res 113:657–667

    PubMed  Google Scholar 

  • Hesse M, Kusel-Fetzmann E, Carniel K (1989) Life cycle and ultrastructure of Ducellieria chodati (Oomycetes). Plant Syst Evol 165:1–15

    Google Scholar 

  • Hickey EL, Coffey MD (1977) A fine-structural study of the pea downy mildew fungus Peronospora pisi in its host Pisum sativum. Can J Bot 55:2845–2858

    Google Scholar 

  • Ho HH, Jong SC (1990) Halophytophthora gen. nov., a new member of the family Pythiaceae. Mycotaxon 19:377–382

    Google Scholar 

  • Ho HH, Nakagiri A, Newell SY (1992) A new species of Halophytophthora form Atlantic and Pacific subtropical islands. Mycologia 84:548–554

    Google Scholar 

  • Holloway SA, Heath IB (1977a) An ultrastructural analysis of the changes in organelle arrangement and structure between the various spore types of Saprolegnia. Can J Bot 55:1328–1339

    Google Scholar 

  • Holloway SA, Heath IB (1977b) Morphogenesis and the role of microtubules in synchronous populations of Saprolegnia zoospores. Exp Mycol 1:9–29

    Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Ragukumar S, Nakagiri A, Schaimann K, Higashirhara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of the 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    CAS  PubMed  Google Scholar 

  • Huang J-H, Chen C-Y, Lin Y-H, Ann P-J, Huang H-C, Chung W-H (2012) Six new species of Pythiogeton in Taiwan, with an account of the molecular phylogeny of this genus. Mycoscience 54:130–147

    Google Scholar 

  • Hudspeth DSS, Nadler SA, Hudspeth MES (2000) A cox II molecular phylogeny of the Peronosporomycetes. Mycologia 92:674–684

    CAS  Google Scholar 

  • Hudspeth DSS, Stenger D, Hudspeth MES (2003) A cox2 phylogenetic hypothesis for the downy mildews and white rusts. Fungal Divers 13:47–57

    Google Scholar 

  • Huizar HE, Aronson JM (1986) Aspects of cellulin deposition and chitin biosynthesis in the Leptomitaceae. Mycologia 78:489–492

    CAS  Google Scholar 

  • Hulvey JP, Padgett DE, Bailey JC (2007) Species boundaries within the Saprolegnia (Saprolegniales, Oomycota) based on morphological and DNA sequence data. Mycologia 99:421–429

    CAS  PubMed  Google Scholar 

  • Hulvey JP, Telle S, Nigrelli L, Lamour K, Thines M (2010) Salisapiliaceae—a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 25:109–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inaba S, Hariyama S (2006) The phylogenetic studies on the genus Cornumyces (Oomycetes) based on the nucleotide sequences of the nuclear large subunit ribosomal RNA and the mitochondrially-encoded cox2 genes. In: 8th International mycological congress handbook and abstracts, IMC Cairns, p 330

    Google Scholar 

  • Inaba S, Tokumasu S (2002) Phylogenetic relationships between the genus Saprolegnia and related genera inferred from ITS sequences. Abstracts of the 7th international mycological congress, Oslo IMC7, p 687

    Google Scholar 

  • James TY, Porter TM, Wallace Martin W (2014) Blastocladiomycota, chapter 7. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Heidelberg

    Google Scholar 

  • Jiang RHY, Tyler BM (2012) Mechanisms and evolution of virulence in oomycetes. Annu Rev Phytopathol 50:14.1–13.24. doi:10.1146/annrev-phyto-081211-172912

    Google Scholar 

  • Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Lobach L, Christie J, van den Ackerveken G, Bottin A, Bulone V, Dı´az-Moreno SM, Dumas B, Fan L, Gaulin E, Govers F, Grenville-Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer Harold JG, Morris P, Nusbaum C, Oome S, Phillips AJ, van Rooyen D, Rzeszutek E, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen JHM, Sykes S, Tripathy S, van den Berg H, Vega-Arreguin JC, Young SK WS, Zeng Q, Dieguez-Uribeondo J, Russ C, Tyler BM, van West P (2013) Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parastica. PLoS Genet 9(6), e1003272. doi:10.1371/journal.pgen.100327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TW (1957) Resting spore development in the marine phycomycete Anisolpidium ectocarpii. Am J Bot 44:875–878

    Google Scholar 

  • Johnson TW (1966) A Lagenidium in the marine diatom Coscinodiscus centralis. Mycologica 58:131–135

    Google Scholar 

  • Johnson TW (1972) Aquatic fungi of Iceland: Olpidiopsis Cornu. J Elisha Mitchell Sci Soc 88:83–91

    Google Scholar 

  • Johnson TW, Seymour RL, Padgett DE (2002) Biology and systematics of the Saprolegniaceae. http://dl.uncw.edu/digilib/biology/fungi/taxonomy%20and%20systematics/padgett%20book/. Accessed Apr 2008

  • Jones GM, O’Dor RK (1983) Ultrastructural observations on a thraustochytrid fungus parasitic in the gills of squid (Illex illecebrosus Lesueur). J Parasitol 69:903–911

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    CAS  PubMed  Google Scholar 

  • Judelson HS, Ah-Fong AMV (2009) Progress and challenges in oomycete transformation. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 435–453

    Google Scholar 

  • Karling JS (1942) The simple holocarpic biflagellate phycomycetes. Columbia University Press, New York

    Google Scholar 

  • Karling JS (1943) The life history of Anisolpidium ectocarpii gen. nov. et sp. nov., and a synopsis and classification of other fungi with anteriorly uniflagellate zoospores. Am J Bot 30:637–648

    Google Scholar 

  • Karling JS (1977) Inconographicum iconarum, 2nd edn. Cramer, Vaduz

    Google Scholar 

  • Karling JS (1981) Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. J Cramer, Vaduz

    Google Scholar 

  • Kazama FY (1980) The zoospore of Schizochytrium aggregatum. Can J Bot 58:2434–2446

    Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    CAS  PubMed  Google Scholar 

  • Kemen E, Jones JDG (2012) Obligate biotroph parasitism: can we link genomes and lifestyles. Trends Plant Sci 17:448–457

    CAS  PubMed  Google Scholar 

  • Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL et al (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094. doi:10.1371/journal.pbio.1001094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerwin JL, Washino RK (1983) Sterol induction of sexual reproduction in Lagenidium giganteum. Exp Mycol 7:109–115

    CAS  Google Scholar 

  • King CA (1903) Observations on the cytology of Araiospora pulchra Thaxter. Proc Boston Soc Nat Hist 31:11–15

    Google Scholar 

  • Kobayashi T, Sakaguchi K, Matsuda T, Abe R, Hama Y et al (2011) Increase in eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid 5 desaturase gene. Appl Environ Microbiol 77:3870–3876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krajaejun T, Khositnithikul R, Lerksuthirat T, Lowhnoo T, Rujirwat T et al (2011) Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum. Fungal Biol 115:683–696

    CAS  PubMed  Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2010) A fungal community in plant tissue from the Lower Coal Measures (Langsettian, Lower Pennsylvanian) of Great Britain. Bull Geosci 85:679–690

    Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2011) The fossil record of the Peronosporomycetes (Oomycota). Mycologia 103:445–457

    Google Scholar 

  • Kroon LMM, Bakker FT, van den Bosch GBM, Bonants PJM, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol 41:766–782

    CAS  PubMed  Google Scholar 

  • Kroon LMM, Brouwer H, de Cock WAM, Govers F (2012) The genus Phytophthora anno 2012. Phytopathology 102:348–364

    PubMed  Google Scholar 

  • Kühn SF, Medlin LK, Eller G (2004) Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155:143–156

    PubMed  Google Scholar 

  • Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella litoralis (Ectocarpales, Phaeophyceae). Nova Hedwig 69:381–389

    Google Scholar 

  • Küpper FC, Maier I, Müller DG, Loiseaux-de Goer S, Guillou L (2006) Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn. Cryptogam Algol 27:165–184

    Google Scholar 

  • Lamour KH, Win J, Kamoun S (2007) Oomycete genomics: new insights and future directions. FEMS Microbiol Lett 274:1–8

    CAS  PubMed  Google Scholar 

  • Lara E, Belbahri L (2011) SSU rRNA reveals major trends in oomycete evolution. Fungal Divers 49:93–100

    Google Scholar 

  • Lara E, Moreira D, Lόpez-García P (2009) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161(1):116–21. doi:10.1016/j.protis.2009.06.005

    PubMed  Google Scholar 

  • Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Google Scholar 

  • Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labryrinthulomycota). Eur J Protist 40:317–328

    Google Scholar 

  • Léclerc MC, Guillot J, Deville M (2000) Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons. Antonie Van Leeuwenhoek 77:369–377

    PubMed  Google Scholar 

  • Lee HY, Aronson JM (1975) Composition of cellulin, a unique chitin-glucan granules of the fungus Apodachlya sp. Arch Microbiol 102:203–208

    CAS  PubMed  Google Scholar 

  • Lehnen LP, Powell MJ (1989) The role of kinetosome-associated organelles in the attachment of encysting secondary zoospores of Saprolegnia ferax to substrates. Protoplasma 149:163–174

    Google Scholar 

  • Leipe DD, Tong SM, Goggin CL, Slemenda SB, Pieniazek NJ, Sogin ML (1994) 16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. Eur J Protistol 33:369–377

    Google Scholar 

  • Levenfors JP, Fatehi J (2009) Molecular characterization of Aphanomyces species associated with legumes. Mycol Res 108:682–689

    Google Scholar 

  • Lévesque CA (2011) Fifty years of oomycete research—from consolidation to evolutionary and genomic exploration. Fungal Divers 50:35–46

    Google Scholar 

  • Lévesque CA, de Cock AW (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    PubMed  Google Scholar 

  • Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CMM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RHY, Johnson J, Krajaejun T, Lin H, Meijer HJG, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73

    PubMed Central  PubMed  Google Scholar 

  • Lilley JH, Hart D, Panywachira V, Kanchanakhan S, Chinabut S, Soderhall K, Cerenius L (2003) Molecular characterization of the fish-pathogenic fungus Aphanomyces invadans. J Fish Dis 26:263–275

    CAS  PubMed  Google Scholar 

  • Links MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D et al (2011) De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 12:503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longcore JE, Brooks JL, Homola L (1987) Apodachyella re-examined. Mycologia 79:621–626

    Google Scholar 

  • Martens C, Vandepoele K, Van de Peer Y (2008) Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species. Proc Natl Acad Sci USA 105:3427–3432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin WW (1975) Aphanomycopsis sexualis a new parasite of midge eggs. Mycologia 67:923–933

    CAS  PubMed  Google Scholar 

  • Martin WW (1977) The development and possible relationships of a new Atkinsiella parasite in insect eggs. Am J Bot 64:766–769

    Google Scholar 

  • Martin FN (2000) Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia 92:711–727

    CAS  Google Scholar 

  • Martin RW, Miller CE (1986) Ultrastructure of sexual reproduction in Olpidiopsis varians. Mycologia 78:359–370

    Google Scholar 

  • Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95:269–284

    CAS  PubMed  Google Scholar 

  • Martin FN, Tooley PW (2008) Phylogenetic relationships of Phytophthora ramorum, P. nemorosa and P. pseudosyringae, three species recovered from areas in California with sudden oak death. Mycol Res 107:1379–1391

    Google Scholar 

  • Maruyama S, Matsuzaki M, Misawa K, Nozaki H (2009) Cyanobacterial contribution to the genomes of the plastid lacking protists. BMC Evol Biol 9:197. doi:10.1186/1471-2148-9-197

    PubMed Central  PubMed  Google Scholar 

  • Massana R, Guillou L, Diez B, Pedró-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedró-Alió C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedró-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    CAS  PubMed  Google Scholar 

  • Maurosa Y, Morimoto K, Sano A, NishimuraK HK (2009) A new peronosporomycete, Halioticida noduliformans gen.et sp. nov., isolated from white nodules in the abalone, Haliotis spp. from Japan. Mycoscience 50:106–115

    Google Scholar 

  • Mendoza L (2009) Pythium insidiosum and mammalian hosts. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley-Blackwell, Ann Arbor, pp 387–406

    Google Scholar 

  • Migula M (1897) Die Characeen – Deutschlands. Osterreichs und der Schweiz. Rabenhorsts Cryptogamenflora 5. Verlag E. Kummer, Leipzig, 765 pp

    Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol 148:382–392

    Google Scholar 

  • Mims CWR, Richardson EA (2002) Ultrastructure of the zoosporangia of Albugo ipomoeae-panduratae as revealed by conventional chemical fixation and high pressure freezing followed by freeze substitution. Mycologia 95:1–10

    Google Scholar 

  • Mirzaee MR, Ploch S, Runge F, Telle S, Nigrelli L, Thines M (2013) A new presumably widespread species of Albugo parasitic to Strigosella spp. (Brassicaceae). Mycol Prog 12:45–52

    Google Scholar 

  • Molloy DP, Glockling SL, Siegfried CA, Beakes GW, James TY, Mastitsky SE, Wurdak E, Giamberini L, Gaylo MJ, Nemeth MJ (2014) Aquastella gen.nov.: a new genus of saprolegniaceous rotifer parasites related to Aphanomyces, with unique sporangial outgrowths. Fungal Biol (in press). doi: 10.1016/j.funbio.2014.01.007

  • Money NP (1998) Why the oomycetes have not stopped being fungi. Mycol Res 102:767–768

    Google Scholar 

  • Moore D, Robson GD, Trinci APJ (2011) 21st century guide to Fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Moreira D, López-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    CAS  PubMed  Google Scholar 

  • Morgan W, Kamoun S (2007) RXLR effectors of plant pathogenic oomycetes. Curr Opin Microbiol 10:332–338

    CAS  PubMed  Google Scholar 

  • Moss ST (1985) An ultrastructural study of taxonomically significant characters of the Thraustochytriales and Labyrinthulales. Bot J Linn Soc 91:329–357

    Google Scholar 

  • Moss ST (1986) Biology and phylogeny of the Labyrinthulales and Thraustochytriales. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 105–129

    Google Scholar 

  • Muehlstein LK, Porter D (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83:180–191

    Google Scholar 

  • Nakagiri A (2002a) Diversity and phylogeny of Halophytophthora (Oomycetes). Abstract of the 7th international mycological congress, Oslo, 55, p 19

    Google Scholar 

  • Nakagiri A (2002b) Halophytophthora species from tropical and subtropical mangroves: a review of their characteristics. In: Hyde KD (ed) Fungi in marine environments, vol 7, Fungal diversity research series. Fungal Diversity Press, Hong Kong, pp 1–14

    Google Scholar 

  • Nakagiri A, Newell SY, Ito T (1994) Two new Halophytophthora species, H. tartarea and H. masteri, from intertidal decomposing leaves in salt marsh and mangrove regions. Mycoscience 35:223–232

    Google Scholar 

  • Nechwatal J, Mendgen K (2005) Pythium litorale sp. nov., a new species from the litoral of Lake Constance, Germany. FEMS Microbiol Lett 255:96–101

    Google Scholar 

  • Newell SY, Cefalu R, Fell JW (1977) Myzocytium, Haptoglossa, and Gonimochaete (fungi) in littoral marine nematodes. Bull Mar Sci 27:177–207

    Google Scholar 

  • Newhook FJ, Podger FD (1972) The role of Phytophthora cinnamomi in Australian and New Zealand forests. Annu Rev Phytopathol 10:299–325

    Google Scholar 

  • Nigrelli L, Thines M (2013) Tropical oomycetes in the German Bight—climate warming or overlooked diversity? Fungal Ecol 6:152–160

    Google Scholar 

  • Olsen MW (2007) Labyrinthula terrestris: a new pathogen of cool-season turfgrasses. Mol Plant Pathol 8:817–820

    PubMed  Google Scholar 

  • Overton SV, Tharp TP, Bland CE (1983) Fine structure of swimming, encysting, and germinating spores of Haliphthoros milfordensis. Can J Bot 61:1165–1177

    Google Scholar 

  • Panabières F, Ponchet M, Allasia V, Cardin L, Ricci P (1996) Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol Res 101:1459–1468

    Google Scholar 

  • Patterson DJ (1989) Chromophytes from a protistan perspective. In: Green JP, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon, Oxford, pp 357–379

    Google Scholar 

  • Perkins FO (1976) Fine structure of lower marine and estuarine fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Press, London, pp 513–542

    Google Scholar 

  • Perkins FO, Amon JP (1969) Zoosporulation in Labyrinthula sp., an electron microscope study. J Protozool 16:235–256

    Google Scholar 

  • Petersen AB, Rosendahl S (2000) Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol Res 104:1295–1303

    CAS  Google Scholar 

  • Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P (2008) New insights into animal pathogenic oomycetes. Trends Microbiol 16:13–19

    CAS  PubMed  Google Scholar 

  • Ploch S, Thines M (2011) Obligate biotrophic pathogens of the genus Albugo are widespread asymptomatic endophytes in natural populations of Brassicaceae. Mol Ecol 20:3692–3699

    PubMed  Google Scholar 

  • Ploch S, Choi Y-J, Rost C, Shin H-D, Schilling E, Thines M (2010) Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol Phylogenet Evol 57:812–820

    PubMed  Google Scholar 

  • Ploch S, Telle S, Choi Y-J, Cunnington J, Priest M, Rost C, Shin H-D, Thines M (2011) The molecular phylogeny of the white blister rust genus Pustula reveals a case of underestimated biodiversity with several undescribed species on ornamentals and crop plants. Fungal Biol 115:214–219

    PubMed  Google Scholar 

  • Polglase JL (1980) A preliminary report on the Thraustochytrid(s) and Labyrinthulid(s) associated with a pathological condition in the lesser octopus Eledone cirrhosa. Bot Mar 23:699–706

    Google Scholar 

  • Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Powell MJ, Letcher PM (2014) Chytridiomycota, Monoblepharidomycota and Neocallimastigomycota, chapter 6. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Heidelberg

    Google Scholar 

  • Pueschel CM, van der Meer JP (1985) Ultrastructure of the fungus Petersenia palmariae (Oomycota) parasitic on the alga Palmaria molis (Rhodophyceae). Can J Bot 63:409–418

    Google Scholar 

  • Qutob D, Kamoun S, Gijzen M (2002) Expression of a Phytophthora sojae necrosis-inducing protein occurs during the transition from biotrophy to necrotrophy. Plant J 32:361–373

    CAS  PubMed  Google Scholar 

  • Raffaele S, Win J, Cano LM, Kamoun S (2010) Analyses of genome and gene expression reveal novel virulence factors in the secretome of Phytophthora infestans. BMC Genomics 11:637

    PubMed Central  PubMed  Google Scholar 

  • Raghukumar C (1980) An ultrastructural study of the marine diatom Licmophora hyalina and its parasite Ectrogella perforans. II. Development of the fungus in its host. Can J Bot 58:2557–2574

    Google Scholar 

  • Raghukumar S (2002a) Bacterivory: a novel dual role for thraustochytrids in the sea. Mar Biol 113:165–169

    Google Scholar 

  • Raghukumar S (2002b) Ecology of marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    CAS  PubMed  Google Scholar 

  • Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Ah Fong AMV, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto-Alalibo T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PRJ, Gisi U, Govers F, Gow NA, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229–243

    PubMed  Google Scholar 

  • Randolph LR, Powell MJ (1992) Ultrastructure of zoospores of the oomycete Apodachlya pyrifera. Mycologia 84:768–780

    Google Scholar 

  • Reeb VC, Peglaer MT, Yoon HS, Bai JR, Wu M, Shia P et al (2009) Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol 53:202–211

    PubMed  Google Scholar 

  • Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ (2006) Evolution of filamentous pathogens: gene exchange across eukaryote kingdoms. Curr Biol 16:1857–1864

    CAS  PubMed  Google Scholar 

  • Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 108:15258–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards TA, Jones MD, Leonard G, Bass G (2012) Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 4:495–522

    PubMed  Google Scholar 

  • Riethmüller A, Weiss M, Oberwinkler F (1999) Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit ribosomal DNA sequences. Can J Bot 77:1790–1800

    Google Scholar 

  • Riethmüller A, Voglmayr H, Göker M, Weiss M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849

    PubMed  Google Scholar 

  • Riethmüller, Grundel A, Langer E (2006) The seasonal occurrence of the sewage fungus Leptomitus lacteus Roth C. Agard in stagnant and running waters of different chemistry of Hesse and Thuringia, Germany. Acta Hydrochem Hydrobiol 34:58–66

    Google Scholar 

  • Riisberg I, Orr RJ, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B, Jakobsen KS (2009) Seven gene phylogeny of heterokonts. Protist 160:191–204

    CAS  PubMed  Google Scholar 

  • Robb EJ, Barron GL (1982) Nature’s ballistic missile. Science 218:1221–1222

    CAS  PubMed  Google Scholar 

  • Robold AV, Hardham AR (2004) Production of monoclonal antibodies against peripheral-vesicle proteins in zoospores of Phytophthora nicotianae. Protoplasma 223:121–132

    CAS  PubMed  Google Scholar 

  • Robold AV, Hardham AR (2005) During attachment Phytophthora spores secrete proteins containing thrombospondin type 1 repeats. Curr Genet 47:307–315

    CAS  PubMed  Google Scholar 

  • Runge F, Thines M (2011) Host matrix has major impact on morphology of Pseudoperonospora cubensis. Eur J Plant Pathol 129:147–156

    Google Scholar 

  • Runge F, Thines M (2012) Re-evaluation of host specificity of the closely related species Pseudoperonospora humuli and P. cubensis. Plant Dis 96:55–61

    Google Scholar 

  • Runge F, Telle S, Ploch S, Savory E, Day B, Sharma R, Thines M (2011a) The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus 2:163–171

    PubMed Central  PubMed  Google Scholar 

  • Runge F, Choi Y-J, Thines M (2011b) Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur J Plant Pathol 129:135–146

    Google Scholar 

  • Runge F, Ndambi B, Thines M (2012) Which morphological characteristics are most influenced by the host matrix in downy mildews? A case study in Pseudoperonospora cubensis. PLoS One 7:e44863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnepf E, Deichgräber G, Drebes G (1977) Development and ultrastructure of the marine, parasitic oomcete, Lagenisma coscinodisci (Lagenidiales): sexual reproduction. Can J Bot 56:1315–1325

    Google Scholar 

  • Schnepf E, Deichgräber G, Drebes G (1978a) Development and ultrastructure of the marine, parasitic oomycete, Lagenisma coscinodisci Drebes (Lagenidiales). The infection. Arch Microbiol 116:133–139

    Google Scholar 

  • Schnepf E, Deichgräber G, Drebes G (1978b) Development and ultrastructure of the marine parasitic oomycete Lagenisma coscinodisci Drebes (Lagenidiales) Thallus, zoosporangium, mitosis and meiosis. Arch Microbiol 116:121–132

    Google Scholar 

  • Schroeder KL, Martin FN, de Cock AWAM, Levesque CA, Speis CDJ, Okubara PA, Paulitz TC (2012) Molecular detection and quantification of Pythium species—evolving taxonomy, new tools and challenges. Plant Dis 97:4–20

    Google Scholar 

  • Schurko AM, Mendoza L, Lévesque CA, Désaulniers NL, de Cock AWAM, Klassen GR (2004) A molecular phylogeny of Pythium insidiosum. Mycol Res 107:537–544

    Google Scholar 

  • Seidl MF, den Ackerveken V, Govers F, Snel B (2012) Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families. Genome Biol Evol 4:199–211

    PubMed Central  PubMed  Google Scholar 

  • Sekimoto S (2008) The taxonomy and phylogeny of the marine holocarpic oomycetes. PhD Thesis, Graduate School of Natural Sciences, Konan University, Kobe, Japan

    Google Scholar 

  • Sekimoto S, Hatai K, Honda D (2007) Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small and large subunit rDNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48:212–221

    CAS  Google Scholar 

  • Sekimoto S, Beakes GW, Gachon CMM, Müller DG, Küpper FC, Honda D (2008a) The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist 159:401–412

    Google Scholar 

  • Sekimoto S, Yokoo K, Kawamura Y, Honda D (2008b) Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, stramenopiles), a unicellular obligate endoparasite of Porphyra spp. (Bangiales, Rhodophyta). Mycol Res 112:361–374

    CAS  PubMed  Google Scholar 

  • Sekimoto S, Kochkova TA, West JA, Beakes GW, Honda D (2009) Olpidiopsis bostrychiae: a new species endoparasitic oomycete that infects Bostrychia and other red algae. Phycologia 48:460–472

    Google Scholar 

  • Shanor L, Olive LS (1943) Notes on Araiospora streptandra. Mycologia 34:536–542

    Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Google Scholar 

  • Soanes DM, Richards TA, Talbot NJ (2007) Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity. Plant Cell 19:3318–3326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soylu EM, Soylu S, Keshavarzi M, Brown I, Mansfield JW (2003) Ultrastructural characterization of the interactions between Arabidopsis thaliana and Albugo candida. Physiol Mol Plant Pathol 63:201–211

    CAS  Google Scholar 

  • Sparrow FK (1934) Observations on marine phycomycetes collected in Denmark. Dansk Bot Ark 8:1–24

    Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Sparrow FK (1973) The peculiar marine phycomycete Atkinsiella dubia from crab eggs. Arch Mikrobiol 93:137–144

    CAS  PubMed  Google Scholar 

  • Sparrow FK (1974) Observations on two uncommon fungi. Veroff Inst Meeresf Bremerh Suppl 5:9–18

    Google Scholar 

  • Sparrow FK (1973a) Mastigomycotina. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol 4b. Academic, New York, pp 61–73

    Google Scholar 

  • Sparrow FK (1973b) Chytridiomycetes. Hyphochytridiomycetes. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol 4b. Academic, New York, pp 85–110

    Google Scholar 

  • Sparrow FK (1973c) Lagenidiales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol 4b. Academic, New York, pp 159–164

    Google Scholar 

  • Sparrow FK (1976) The present status of classification in biflagellate fungi. In: Gareth-Jones EB (ed) Recent advances in aquatic mycology. Elek Science, London, pp 213–222

    Google Scholar 

  • Sparrow FK (1977) Rhizidiomycopsis on azygospores of Gigaspora margarita. Mycologia 69:1053–1058

    Google Scholar 

  • Spencer MA, Vick MC, Dick MW (2002) Revision of Aplanopsis, Pythiopsis, and ‘subcentric’ Achlya species (Saprolegniaceae) using 18S rDNA and morphological data. Mycol Res 106:549–560

    CAS  Google Scholar 

  • Stassen JHM, Siedl MF, Vergeer PWJ, Nijman IJ, Snel B, Cuppen E, Van den Ackerveken G (2011) Effector identification in the downy mildew Bremia lactucae by massively parallel transcriptome sequencing. Mol Plant Pathol 13:719–731

    Google Scholar 

  • Stidd BM, Consentino K (1975) Albugo-like oogonia from the American carboniferous. Science 190:1092–1093

    Google Scholar 

  • Strittmatter M, Gachon CMM, Kupper F (2009) Ecology of lower oomycetes. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley-Blackwell, Ann Arbor, pp 25–46

    Google Scholar 

  • Strullu-Derrien C, Kenrick P, Rioult JP, Strullu DG (2010) Evidence of parasitic oomycetes (Peronosporomycetes) infecting the stem cortex oft eh Carboniferous seed fern Lygniopteris odlhamia. Proc R Soc B. doi:10.1098/rspb.2010.1603

    PubMed Central  PubMed  Google Scholar 

  • Taylor TN, Krings M, Keri H (2006) Hassiella monspora gen. et sp. nov., a microfungus from the 400 million year old Rhynie chert. Mycol Res 110:628–632

    PubMed  Google Scholar 

  • Telle S, Thines M (2012) Reclassification of an enigmatic downy mildew species on lovegrass (Eragrostis) to the new genus Eraphthora, with a key to the genera of the Peronosporaceae. Mycol Prog 11:121–129

    Google Scholar 

  • Telle S, Shivas RG, Ryley MJ, Thines M (2011) Molecular phylogenetic analysis of Peronosclerospora (Oomycetes) reveals cryptic species and genetically distinct species parasitic to maize. Eur J Plant Pathol 130:521–528

    Google Scholar 

  • Tewari JP, Skoropad WP (1977) Ultrastructure of oospore development in Albugo candida on rape seed. Can J Bot 55:2348–2357

    Google Scholar 

  • Thaxter (1896) New and peculiar aquatic fungi. 4. Rhipidium, Sapromyces and Araiospora, nov. gen. Bot Gaz 21:317–330

    Google Scholar 

  • Thines M (2009) Bridging the gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS One 4:e4790

    PubMed Central  PubMed  Google Scholar 

  • Thines M (2011) Recent outbreaks of downy mildew on grape ivy (Parthenocissus tricuspidata Vitaceae) in Germany are caused by a new species of Plasmopara. Mycol Prog 10:415–422

    Google Scholar 

  • Thines M, Kamoun S (2010) Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Biol 13:427–433

    Google Scholar 

  • Thines M, Spring O (2005) A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon 92:443–458

    Google Scholar 

  • Thines M, Voglmayr H (2009) An introduction to the white blister rusts (Albuginales). In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 77–92

    Google Scholar 

  • Thines M, Göker M, Oberwinkler F (2006) A revision of Bremia graminicola. Mycol Res 110:646–656

    PubMed  Google Scholar 

  • Thines M, Göker M, Oberwinkler F, Spring O (2007) A revision of Plasmopara penniseti, with implications for the host range of the downy mildews with pyriform haustoria. Mycol Res 111:1377–1385

    CAS  PubMed  Google Scholar 

  • Thines M, Göker M, Telle S, Ryley M, Mathur K, Narayana YD, Spring O, Thakur RP (2008) Phylogenetic relationships in graminicolous downy mildews based on cox2 sequence data. Mycol Res 112:345–351

    CAS  PubMed  Google Scholar 

  • Thines M, Choi Y-J, Kemen E, Ploch S, Holub EB, Shin H-D, Jones JDG (2009a) A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22:123–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thines M, Telle S, Ploch S, Runge F (2009b) Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol Res 113:532–540

    PubMed  Google Scholar 

  • Thines M, Voglmayr H, Göker M (2009c) Taxonomy and phylogeny of the downy mildews. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 47–75

    Google Scholar 

  • Tian M, Win J, Savory R, Burkhart A, Held M, Brandizzi F, Day F (2011) 454 Genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motive. Mol Plant Microbe Interact 24:543–553

    CAS  PubMed  Google Scholar 

  • Tokunaga Y (1934) Notes on the Lagendiaceae in Japan. Trans Sapporo Nat Hist Soc 13:227–232

    Google Scholar 

  • Tong SM (1995) Developayella elegans nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. Eur J Protistol 31:24–31

    Google Scholar 

  • Tooley PW, Therrien CD (1987) Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates of Phytophthora infestans. Exp Mycol 11:19–26

    CAS  Google Scholar 

  • Torto-Alalibo T, Tian M, Gajendran K, Waugh ME, Van West P, Kamoun S (2005) Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiol 5:46. doi:10.1186/1471-2180-5-46

    PubMed Central  PubMed  Google Scholar 

  • Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50:129–140

    CAS  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover the evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    CAS  PubMed  Google Scholar 

  • Uzuhashi S, Tojo M, Kakishima M (2010) Phylogeny of the genus Pythium and description of new genera. Mycoscience 51:337–365

    Google Scholar 

  • Van der Auwera G, Da Baere R, Van der Peer Y, Rijk PD, Van den Broeck I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12:671–678

    PubMed  Google Scholar 

  • Van der Plaats-Niterink AJ (1981) Monograph of the genus Pythium. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Van West P (2006) Saprolegnia parasitica, an oomycete pathogen with a fishy appetite; new challenges for an old problem. Mycologist 20:99–104

    Google Scholar 

  • Vanterpool TC (1959) Oospore germination in Albugo candida. Can J Bot 37:169–172

    Google Scholar 

  • Vanterpool TC, Ledingham GA (1930) Studies on browning root rot of cereals. Can J Res 2:171–194

    Google Scholar 

  • Villa NO, Kageyama K, Asano T, Suga H (2006) Phylogenetic relationships of Pythium and Phytophthora species based on ITS, rDNA, cytochrome oxidase II and β-tubulin gene sequences. Mycologia 98:410–422

    CAS  PubMed  Google Scholar 

  • Vlk W (1939) Über die Geisselstruktur der Saprolegniaceenschwärmer. Arch Protistenkd 92:157–160

    Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathaways among fungi: evolutionary implications. Am Nat 98:435–446

    CAS  Google Scholar 

  • Voglmayer H, Riethmüller A (2006) Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycol Res 110:75–85

    Google Scholar 

  • Voglmayr H (2003) Phylogenetic study of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142

    CAS  PubMed  Google Scholar 

  • Voglmayr H (2008) Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. Eur J Plant Pathol 122:3–18

    Google Scholar 

  • Voglmayr H, Constantinescu O (2008) Revision and reclassification of three Plasmopara species based on morphological and molecular phylogenetic data. Mycol Res 112:487–501

    CAS  PubMed  Google Scholar 

  • Voglmayr H, Thines M (2007) Phylogenetic relationships and nomenclature of Bremiella sphaerosperma (Chromista, Peronosporales). Mycotaxon 100:11–20

    Google Scholar 

  • Voglmayr H, Bonner L, Dick MW (1999) Taxonomy and oogonial ultrastructure of a new aero-aquatic peronosporomycete, Medusoides gen nov. (Pythiogetonaceae fam nov). Mycol Res 103:591–606

    Google Scholar 

  • Voglmayr H, Riethmüller A, Göker M, Weiss M, Oberwinkler F (2004) Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycol Res 108:1011–1024

    CAS  PubMed  Google Scholar 

  • Watanabe T (1987) Plectospira myriandra, a rediscovered water mold in Japanese soil. Mycologia 79:77–81

    Google Scholar 

  • Waterhouse GM (1970) The genus Phytophthora de Bary: Diagnoses (or descriptions) and figures from the original papers, 2nd edn. Mycological Papers 122:1–59

    Google Scholar 

  • Waterhouse GM (1973) Peronosporales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol IVb. Academic, New York, pp 165–183

    Google Scholar 

  • Wavra S, Bain J, Durward E, Bruijn ID, Minor KL et al (2012) Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O- sulphate-dependent manner. Proc Natl Acad Sci USA 109:2096–2101

    Google Scholar 

  • Webster J (1970) Introduction to fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Weston WH, Uppal BN (1932) The basis of Sclerospora sorghi as a species. Phytopathology 22:573–586

    Google Scholar 

  • Whisson SC, Avrova A, Grenville-Briggs L, van West P (2009) Mechanisms and applications of gene silencing in oomycetes. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 493–515

    Google Scholar 

  • Willoughby LG (1962) The occurrence of reproductive spores of Saprolegniaceae in freshwater. J Ecol 50:733–759

    Google Scholar 

  • Willoughby LG, Roberts RJ (1991) Occurrence of the sewage fungus Leptomitus lacteus, a necrotroph on perch (Perca fluviatilis), in Windermere. Mycol Res 95:755–768

    Google Scholar 

  • Worden AZ, Not F (2008) Ecology and diversity of piceukaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 159–205

    Google Scholar 

  • Wynn AR, Epton HAS (1979) Parasitism of oospores of the Phytophthora erythroseptica in soil. Trans Br Mycol Soc 73:255–259

    Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen nov. Mycoscience 48:199–211

    CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botrychytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience 48:329–341

    CAS  Google Scholar 

  • Yubuki N, Leander BS, Silberan JD (2010) Ultrastructure and molecular phylogenetic position of a novel phagotrophic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Biocosoecida, incertae sedis). Protist 161:264–278

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our many colleagues who have shared unpublished trees and other information, including Arthur de Cock, Mike Coffey, Frithjoff Küpper, Claire Gachon, Sally Glockling, Mike and Deborah Hudspeth, Shigeki Inaba, Tim James, Riays Jiang, Andre Lévesque, Satoshi Sekimoto, and Chris Spies, whose helpful comments and unpublished phylogenetic trees are greatly appreciated. Most of the illustrative material was adapted from the excellent line drawings of Johnson et al. (2002), John Webster and the late John Karling. MT is supported by the LOEWE program of the state of Hessen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Beakes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beakes, G.W., Honda, D., Thines, M. (2014). 3 Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_3

Download citation