Advertisement

Gallium Arsenide Disks as Optomechanical Resonators

  • Ivan Favero
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

The interaction of light with mechanical motion—optomechanics  [1, 2, 3, 4]—is now investigated in a wide variety of experimental settings. In the last years, the field also benefited from the advances of nanophotonics. We discuss here the merits of Gallium Arsenide (GaAs) optomechanical disk resonators, which bring together high mechanical frequency, ultra-strong optomechanical coupling and low optical/mechanical dissipation. Based on a relatively simple geometry, these miniature optomechanical resonators permit a complete on-chip optical integration, a natural interfacing with optically active elements and the combination with optoelectronics architectures typical of III–V semiconductors.

Keywords

Gallium Arsenide Mechanical Dissipation Whisper Gallery Mode Radial Breathing Mode Disk Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I. Favero acknowledges support of the French ANR trough the Nomade and QDOM projects, of the C-Nano IdF through the Naomi project, and of the ERC through the Ganoms project.

References

  1. 1.
    T.J. Kippenberg, K.J. Vahala, Science 321(5893), 1172 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    I. Favero, K. Karrai, Nat. Photonics 3, 201 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    F. Marquardt, S.M. Girvin, Physics 2, 40 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, J. Opt. Soc. Am. B 27(6), A189 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    B. Gayral, J.M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, J.L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W.V. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 78, 3932 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Phys. Rev. Lett. 95, 067401 (2005)Google Scholar
  8. 8.
    S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Appl. Phys. Lett. 60, 289 (1992)Google Scholar
  9. 9.
    A. Andronico, I. Favero, G. Leo, Opt. Lett. 33, 2026–2028 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Miao, H.L. Hartnagel, B.L. Weiss, R.J. Wilson, Electron. Lett. 31(13), 1047 (1995)Google Scholar
  11. 11.
    L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Phys. Rev. Lett. 105, 263903 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Proc. SPIE 7712, 771211 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 98, 113108 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, G. Leo, J. Europ. Opt. Soc. Rap. Public. 3, 08030 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Andronico, Etude électromagnétique d’émetteurs intégrés infrarouges et THz en AlGaAs. PhD thesis 2008Google Scholar
  16. 16.
    Z. Hao, S. Pourkamali, F. Ayazi, J. Microelectromech. Syst. 13(6), 1043 (2004)CrossRefGoogle Scholar
  17. 17.
    Z. Hao, F. Ayazi, Sens. Actuators A 134, 582 (2007)CrossRefGoogle Scholar
  18. 18.
    I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Safavi-Naeini, O. Painter, Opt. Express 18(14), 14926 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    D.T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lematre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 103, 241112 (2013)Google Scholar
  21. 21.
    G. Bahl, M. Tomes, F. Marquardt, T. Carmon, Nat. Phys. 8, 203 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Favero, Nat. Phys. 8, 180 (2012)CrossRefGoogle Scholar
  23. 23.
    P.T. Rakich, P. Davids, Z. Wang, Opt. Express 18(14), 14439 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C. Baker, W. Hease, T. Nguyen, A. Andronico, G. Leo, S. Ducci, I. Favero (2014) arXiv:1403.4269
  25. 25.
    W.C. Jiang, X. Lu, J. Zhang, Q. Lin, Opt. Express 20(14), 15991 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Sun, X. Zhang, H.X. Tang, App. Phys. Lett. 100, 173116 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    G. Brambilla, V. Finazzi, D.J. Richardson, Opt. Express 12, 2258 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L. Ding, C. Belacel, S. Ducci, G. Leo, I. Favero, Appl. Opt. 49(13), 2441 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, G. Leo, Leo. Appl. Phys. Lett. 94, 171110 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    M. Savanier, A. Andronico, C. Manquest, A. Lemaitre, E. Galopin, I. Favero, S. Ducci, G. Leo, Opt. Lett. 36, 2955 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, I. Favero, Appli. Phys. Lett. 99, 151117 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    C.P. Michael, K. Srinivasan, T.J. Johnson, O. Painter, K.H. Lee, K. Hennessy, H. Kim, EHu Appl, Phys. Lett. 90, 051108 (2007)Google Scholar
  34. 34.
    D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 100, 242105 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J. Wang, Z. Ren, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    J. Restrepo, C. Ciuti, I. Favero, Phys. Rev. Lett. 112, 013601 (2014)Google Scholar
  37. 37.
    O. Kyriienko, T.C.H. Liew, I.A. Shelykh, Phys. Rev. Lett. 112, 076402 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNRSUniversité Paris DiderotParisFrance

Personalised recommendations