Skip to main content

Mechanical Resonators in the Middle of an Optical Cavity

  • Chapter
  • First Online:
Cavity Optomechanics

Part of the book series: Quantum Science and Technology ((QST))

Abstract

The interaction of light with mechanical motion has generated a burst of interest in recent years [14] from fundamental questions on the quantum motion of solid objects to novel engineering concepts for sensing and optical devices. This interest was originally inspired by experimental geometries in which a mechanically compliant object acts as the back mirror of Fabry-Perot cavity. In order to maintain a stable, high-finesse cavity with this geometry, the mechanical element’s transverse dimensions must be larger than the photon’s wavelength and its thickness sufficient to create an appreciable reflectivity. This places a lower bound on the mass of the mechanical object, limiting the effect of individual photons. Here we explore a complementary set of geometries in which a nanomechanical element or a very thin membrane is positioned within a high-finesse, rigid optical cavity. This geometry (inspired by the success of cavity quantum electrodynamics experiments with atoms) extends Fabry-Perot-based optomechanics to smaller / sub-wavelength mechanical elements. The added complexity associated with inserting a third (movable) scatterer also affords a new set of opportunities: in addition to reproducing the physics of a two-mirror optomechanical system, several “non-standard” types of linear and non-linear optomechanical couples can be generated. Combined with the diverse set of comparatively lightweight mechanical elements that can be inserted into a cavity, this geometry offers a high degree of optomechanical versatility for potential sensing and quantum information applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumes that the beam’s mechanical frequency is independent of its width, which is not out of the question because the beam’s mass and spring constant should both scale \(\sim \) linearly with its width in the simplest case.

  2. 2.

    Provided you order a minimum of ten such meals and agree to pay all shipping, duties, and brokerage fees.

  3. 3.

    Note that this is generally the first assumption to reconsider if the theory doesn’t match experiment.

References

  1. T.J. Kippenberg, K.J. Vahala, Science 321(5893), 1172 (2008)

    Article  ADS  Google Scholar 

  2. I. Favero, K. Karrai, Nat. Photonics 3, 201 (2009)

    Article  ADS  Google Scholar 

  3. F. Marquardt, S.M. Girvin, Physics 2, 40 (2009)

    Article  Google Scholar 

  4. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, J. Opt. Soc. Am. B 27, A189 (2010)

    Google Scholar 

  5. A.E. Siegman, Lasers (Oxford University Press, Oxford, 1986)

    Google Scholar 

  6. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Google Scholar 

  7. W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering (Wiley, New York, 1990)

    Google Scholar 

  8. A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003)

    Book  Google Scholar 

  9. Q.P. Unterreithmeier, T. Faust, J.P. Kotthaus, Phys. Rev. Lett. 105, 027205 (2010)

    Google Scholar 

  10. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997)

    Article  ADS  Google Scholar 

  11. V. Vuletic, S. Chu, Phys. Rev. Lett. 84, 3787 (2000)

    Article  ADS  Google Scholar 

  12. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, G. Rempe, Nature 428, 50 (2004)

    Article  ADS  Google Scholar 

  13. P.F. Barker, M.N. Shneider, Phys. Rev. A 81, 023826 (2010)

    Google Scholar 

  14. O. Romero-Isart, M.L. Juan, R. Quidant, J.I. Cirac, New J. Phys. 12, 033015 (2010)

    Google Scholar 

  15. D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Proc. Natl. Acad. Sci. 107, 1005 (2010)

    Google Scholar 

  16. T. Li, S. Kheifets, M.G. Raizen, Nat. Phys. 7, 527 (2011)

    Article  Google Scholar 

  17. P. Meystre, E.M. Wright, J.D. McCullen, E. Vignes, J. Opt. Soc. Am. B 2, 1830 (1985)

    Google Scholar 

  18. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Nature 452, 72 (2008)

    Google Scholar 

  19. A.M. Jayich, J.C. Sankey, B.M. Zwickl, C. Yang, J.D. Thompson, S.M. Girvin, A.A. Clerk, F. Marquardt, J.G.E. Harris, New J. Phys. 10, 095008 (2008)

    Google Scholar 

  20. M. Bhattacharya, H. Uys, P. Meystre, Phys. Rev. A 77, 033819 (2008)

    Google Scholar 

  21. D.J. Wilson, C.A. Regal, S.B. Papp, H.J. Kimble, Phys. Rev. Lett. 103, 207204 (2009)

    Google Scholar 

  22. J.C. Sankey, C. Yang, B.M. Zwickl, A.M. Jayich, J.G.E. Harris, Nat. Phys. 6, 707 (2010)

    Google Scholar 

  23. C. Biancofiore, M. Karuza, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, D. Vitali, Phys. Rev. A 84, 033814 (2011)

    Article  ADS  Google Scholar 

  24. A.M. Jayich, J.C. Sankey, K. Borkje, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S.M. Girvin, J.G.E. Harris, arxiv:1209.2730 (2012)

    Google Scholar 

  25. T.P. Purdy, R.W. Peterson, P.L. Yu, C.A. Regal, New J. Phys. 14, 115021 (2012)

    Google Scholar 

  26. M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di Giuseppe, D. Vitali, J. Opt. 15, 025704 (2013)

    Google Scholar 

  27. T.P. Purdy, R.W. Peterson, C.A. Regal, Science 339, 801 (2013)

    Google Scholar 

  28. A. Xuereb, P. Domokos, New J. Phys. 14, 095027 (2012)

    Google Scholar 

  29. I. Favero, K. Karrai, New J. Phys. 10, 095006 (2008)

    Google Scholar 

  30. M.Y. Sfeir, F. Wang, L. Huang, C.C. Chuang, J. Hone, S.P. O’Brien, T.F. Heinz, L.E. Brus, Science 306, 1540 (2004)

    Google Scholar 

  31. A. Gruber, A. Dröbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Borczyskowski, Science 276, 2012 (1997)

    Google Scholar 

  32. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nano Lett. 2, 87 (2002)

    Google Scholar 

  33. A. Högele, S. Seidl, M. Kroner, K. Karrai, R.J. Warburton, B.D. Gerardot, P.M. Petroff, Phys. Rev. Lett. 93, 217401 (2004)

    Article  ADS  Google Scholar 

  34. F. Elste, S.M. Girvin, A.A. Clerk, Phys. Rev. Lett. 102, 207209 (2009)

    Google Scholar 

  35. C. Genes, H. Ritsch, D. Vitali, Phys. Rev. A 80, 061803 (2009)

    Google Scholar 

  36. A. Xuereb, R. Schnabel, K. Hammerer, Phys. Rev. Lett. 107, 213604 (2011)

    Google Scholar 

  37. J. Restrepo, J. Gabelli, C. Ciuti, I. Favero, C. R. Phys. 12, 860 (2011)

    Google Scholar 

  38. N.L.S. De Liberato, F. Nori, Phys. Rev. A 83, 033809 (2011)

    Article  ADS  Google Scholar 

  39. S.J. van Enk, H.J. Kimble, Phys. Rev. A 63, 023809 (2001)

    Article  ADS  Google Scholar 

  40. K. Karrai, R.J. Warburton, Superlattices Microstruct. 33, 311 (2003). Special issue dedicated to Professor Jorg Kotthaus on the occasion of his 60th Birthday, 29th May 2004

    Google Scholar 

  41. A. Högele, Laser spectroscopy of single charge-tunable quantum dots. Ph.D. thesis, Ludwig-Maximilians-Universität München (2006). Verlag Dr. Hut, München

    Google Scholar 

  42. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)

    Google Scholar 

  43. I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E.M. Weig, K. Karrai, Opt. Express 17, 12813 (2009)

    Google Scholar 

  44. H.B.G. Casimir, Phillips Res. Rep. 6, 162182 (1951)

    MathSciNet  Google Scholar 

  45. R.A. Waldron, Proc. IEE C Monogr. UK 107, 272 (1960)

    Google Scholar 

  46. M. Eichenfeld, J. Chan, R.M. Camacho, K. Vahala, O. Painter, Nature 462, 08524 (2009)

    Google Scholar 

  47. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Phys. Rev. Lett. 105, 263903 (2010)

    Article  ADS  Google Scholar 

  48. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 98, 113108 (2011)

    Article  ADS  Google Scholar 

  49. C. Metzger, I. Favero, A. Ortlieb, K. Karrai, Phys. Rev. B 78, 035309 (2008)

    Google Scholar 

  50. T. Steinmetz, Y. Colombe, D. Hunger, T.W. Hänsch, A. Balocchi, R.J. Warburton, J. Reichel, Appl. Phys. Lett. 89, 111110 (2006)

    Google Scholar 

  51. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T.W. Hänsch, J. Reichel, New J. Phys. 12, 065038 (2010)

    Google Scholar 

  52. S. Stapfner, I. Favero, D. Hunger, P. Paulitschke, J. Reichel, K. Karrai, E.M. Weig, Proc. SPIE 7727, 772706 (2010)

    Google Scholar 

  53. S. Stapfner, L. Ost, D. Hunger, E.M. Weig, J. Reichel, I. Favero, Appl. Phys. Lett. 102, 111110 (2013)

    Article  ADS  Google Scholar 

  54. N.E. Flowers-Jacobs, S.W. Hoch, J.C. Sankey, A. Kashkanova, A.M. Jayich, C. Deutsch, J. Reichel, J.G.E. Harris, arXiv:1206.3558 (2012)

  55. G. Jänchen, P. Hoffmann, A. Kriele, H. Lorenz, A.J. Kulik, G. Dietler, Appl. Phys. Lett. 80, 4623 (2002)

    Google Scholar 

  56. NanoTools. (www.nanotools.com)

    Google Scholar 

  57. S.S. Verbridge, J.M. Parpia, R.B. Reichenbach, L.M. Bellan, H.G. Craighead, J. Appl. Phys. 99, 124304 (2006)

    Google Scholar 

  58. I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008)

    Google Scholar 

  59. A. Jöckel, M.T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, P. Treutlein, Appl. Phys. Lett. 99, 143109 (2011)

    Google Scholar 

  60. H. Miao, S. Danilishin, T. Corbitt, Y. Chen, Phys. Rev. Lett. 103, 100402 (2009)

    Google Scholar 

  61. A. Nunnenkamp, K. Børkje, J.G.E. Harris, S.M. Girvin, Phys. Rev. A 82, 021806 (2010)

    Google Scholar 

  62. G. Heinrich, J.G.E. Harris, F. Marquardt, Phys. Rev. A 81, 011801 (2010)

    Google Scholar 

  63. N.E.F. Jacobs, S.W. Hoch, J.C. Sankey, A. Kashkanova, A.M. Jayich, C. Deutsch, J. Reichel, J.G.E. Harris, Appl. Phys. Lett. 101, 221109 (2012)

    Google Scholar 

  64. J.C. Sankey, A.M. Jayich, B.M. Zwickl, C. Yang, J.G.E. Harris, Proc. XXI Intl. Conf. Atomic Phys. (2009)

    Google Scholar 

  65. J. Rosenberg, Q. Lin, O. Painter, in OSA Technical Digest (CD) (Optical Society of America, 2010); doi:10.1364/cleo.2010.jmc1

  66. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  67. A.A. Clerk, F. Marquardt, J.G.E. Harris, Phys. Rev. Lett. 104, 213603 (2010)

    Google Scholar 

  68. K. Jacobs, Phys. Rev. Lett. 99, 117203 (2007)

    Google Scholar 

Download references

Acknowledgments

Ivan Favero and Eva Weig acknowledge support by DAAD/Egide Procope and BFHZ/CCUFB exchange programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Favero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Favero, I., Sankey, J., Weig, E.M. (2014). Mechanical Resonators in the Middle of an Optical Cavity. In: Aspelmeyer, M., Kippenberg, T., Marquardt, F. (eds) Cavity Optomechanics. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55312-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55312-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55311-0

  • Online ISBN: 978-3-642-55312-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics