Skip to main content

Cavity Optomechanics with Cold Atoms

  • Chapter
  • First Online:
Cavity Optomechanics

Part of the book series: Quantum Science and Technology ((QST))

Abstract

The mechanical influence on objects due to their interaction with light has been a central topic in atomic physics for decades. Thus, not surprisingly, one finds that many concepts developed to describe cavity optomechanical systems with solid-state mechanical oscillators have also been developed in a parallel stream of scientific literature pertaining to cold atomic physics. In this chapter, I describe several of these ideas from atomic physics, including optical methods for detecting quantum states of single cold atoms and atomic ensembles, motional effects within single-atom cavity quantum electrodynamics, and collective optical effects such as superradiant Rayleigh scattering and cavity cooling of atomic ensembles. Against this background, I present several experimental realizations of cavity optomechanics in which an atomic ensemble serves as the mechanical element. These are divided between systems driven either by sending light onto the cavity input mirrors (“cavity pumped”), or by sending light onto the atomic ensemble (“side pumped”). The cavity-pumped systems clearly exhibit the key phenomena of cavity optomechanical systems, including cavity-aided position sensing, coherent back action effects such as the optical spring and cavity cooling, and optomechanical bistability; several of these effects have been detected not only for linear but also for quadratic optomechanical coupling. The extreme isolation of the atomic ensemble from mechanical disturbances, and its strong polarizability near the atomic resonance frequency, allow these optomechanical systems to be highly sensitive to quantum radiation pressure fluctuations. I describe several ways in which these fluctuations are observed experimentally. I conclude by considering the side-pumped cavity experiments in terms of cavity optomechanics, complementing recent treatments of these systems in terms of condensed-matter physics concepts such as quantum phase transitions and supersolidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a structured collection of atoms, as for solid-state mirrors and membranes used in cavity optomechanics experiments, light scattering becomes, of course, highly anisotropic. Force fluctuations due to the uncertain direction of light emission are reduced, but fluctuations due to the uncertain time of photon scattering remains.

  2. 2.

    For simplicity, we assume the cavity is near-planar and thus neglect the divergence of the cavity optical field beyond the Rayleigh range.

References

  1. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    ADS  Google Scholar 

  2. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)

    ADS  Google Scholar 

  3. W. Phillips, Rev. Mod. Phys. 70, 721 (1998)

    ADS  Google Scholar 

  4. D.W.C. Brooks, T. Botter, S. Schreppler, T.P. Purdy, N. Brahms, D.M. Stamper-Kurn, Nature 488, 476 (2012)

    ADS  Google Scholar 

  5. N. Brahms, T. Botter, S. Schreppler, D.W.C. Brooks, D.M. Stamper-Kurn, Phys. Rev. Lett. 108, 133601 (2012)

    ADS  Google Scholar 

  6. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    ADS  Google Scholar 

  7. J.P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980)

    ADS  Google Scholar 

  8. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Sci. Am. B 2, 1707 (1985)

    ADS  Google Scholar 

  9. S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, W. Ketterle, Science 285, 571 (1999)

    Google Scholar 

  10. C. Salomon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987)

    ADS  Google Scholar 

  11. J.H. Thywissen, M. Prentiss, New J. Phys. 7, 47 (2005)

    ADS  Google Scholar 

  12. J.E. Thomas, Opt. Lett. 14, 1186 (1989)

    ADS  Google Scholar 

  13. S. Kunze, G. Rempe, M. Wilkens, Europhys. Lett. 27, 115 (1994)

    ADS  Google Scholar 

  14. K.D. Stokes, C. Schnurr, J.R. Gardner, M. Marable, G.R. Welch, J.E. Thomas, Phys. Rev. Lett. 67, 1997 (1991)

    ADS  Google Scholar 

  15. J.R. Gardner, M.L. Marable, G.R. Welch, J.E. Thomas, Phys. Rev. Lett. 70, 3404 (1993)

    ADS  Google Scholar 

  16. P. Storey, M. Collett, D. Walls, Phys. Rev. Lett. 68, 472 (1992)

    ADS  Google Scholar 

  17. M.A.M. Marte, P. Zoller, Appl. Phys. B: Photophys. Laser Chem. 54, 477 (1992)

    ADS  Google Scholar 

  18. P. Storey, M. Collett, D. Walls, Phys. Rev. A 47, 405 (1993)

    ADS  Google Scholar 

  19. A.M. Herkommer, H.J. Carmichael, W.P. Schleich, Quantum and semiclassical optics. J. Eur. Opt. Soc. Part B 8, 189 (1996)

    Google Scholar 

  20. H. Mabuchi, Quantum and semiclassical optics. J. Eur. Opt. Soc. Part B 8, 1103 (1996)

    Google Scholar 

  21. G. Rempe, App. Phys. B 60, 233 (1995)

    ADS  Google Scholar 

  22. R. Quadt, M. Collett, D.F. Walls, Phys. Rev. Lett. 74, 351 (1995)

    ADS  Google Scholar 

  23. J.A. Dunningham, H.M. Wiseman, D.F. Walls, Phys. Rev. A 55, 1398 (1997)

    ADS  Google Scholar 

  24. H. Mabuchi, Q.A. Turchette, M.S. Champan, H.J. Kimble, Opt. Lett. 21, 1393 (1996)

    ADS  Google Scholar 

  25. P. Münstermann, T. Fischer, P.W.H. Pinkse, G. Rempe, Opt. Commun. 159, 63 (1999)

    ADS  Google Scholar 

  26. C. Hood, T. Lynn, A. Doherty, A. Parkins, H. Kimble, Science 287, 1447 (2000)

    ADS  Google Scholar 

  27. A.C. Doherty, A.S. Parkins, S.M. Tan, D.F. Walls, Phys. Rev. A 56, 833 (1997)

    ADS  Google Scholar 

  28. A.C. Doherty, A.S. Parkins, S.M. Tan, D.F. Walls, Phys. Rev. A 57, 4804 (1998)

    ADS  Google Scholar 

  29. A.C. Doherty, T.W. Lynn, C.J. Hood, H.J. Kimble, Phys. Rev. A 63, 013401 (2001)

    ADS  Google Scholar 

  30. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997)

    ADS  Google Scholar 

  31. G. Hechenblaikner, M. Gangl, P. Horak, H. Ritsch, Phys. Rev. A 58, 3030 (1998)

    ADS  Google Scholar 

  32. V. Braginsky, A. Manukin, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago and London, 1977)

    Google Scholar 

  33. A.T. Black, J.K. Thompson, V. Vuletic, J. Phys. B 38, S605 (2005)

    ADS  Google Scholar 

  34. V. Vuletić, S. Chu, Phys. Rev. Lett. 84, 3787 (2000)

    ADS  Google Scholar 

  35. T.W. Mossberg, M. Lewenstein, D.J. Gauthier, Phys. Rev. Lett. 67, 1723 (1991)

    ADS  Google Scholar 

  36. K. Murr, Phys. Rev. Lett. 96, 253001 (2006)

    ADS  Google Scholar 

  37. V. Vuletić, H.W. Chan, A.T. Black, Phys. Rev. A 64, 033405 (2001)

    Google Scholar 

  38. O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Nature 444, 71 (2006)

    ADS  Google Scholar 

  39. S. Gigan, H.R. Bohm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

    Google Scholar 

  40. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Phys. Rev. Lett. 97, 243905 (2006)

    ADS  Google Scholar 

  41. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Nature 443, 193 (2006)

    ADS  Google Scholar 

  42. P. Münstermann, T. Fischer, P. Maunz, P. Pinkse, G. Rempe, Phys. Rev. Lett. 82, 3791 (1999)

    ADS  Google Scholar 

  43. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, G. Rempe, Nature 428, 50 (2004)

    ADS  Google Scholar 

  44. S. Nuszmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, G. Rempe, Nat. Phys. 1, 122 (2005)

    Google Scholar 

  45. D.R. Leibrandt, J. Labaziewicz, V. Vuletic, I.L. Chuang, Phys. Rev. Lett. 103, 103001 (2009)

    ADS  Google Scholar 

  46. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller, Opt. Commun. 97, 353 (1993)

    ADS  Google Scholar 

  47. J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. A 51, 1650 (1995)

    ADS  Google Scholar 

  48. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007)

    ADS  Google Scholar 

  49. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Google Scholar 

  50. K.W. Murch, K.L. Moore, S. Gupta, D.M. Stamper-Kurn, Nat. Phys. 4, 561 (2008)

    Google Scholar 

  51. K. Murr, P. Maunz, P.W.H. Pinkse, T. Puppe, I. Schuster, D. Vitali, G. Rempe, Phys. Rev. A 74, 043412 (2006)

    ADS  Google Scholar 

  52. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. Pinkse, G. Rempe, Phys. Rev. Lett. 94, 033002 (2005)

    ADS  Google Scholar 

  53. T. Puppe, I. Schuster, P. Maunz, K. Murr, P.W.H. Pinkse, G. Rempe, J. Mod. Opt. 54, 1927 (2007)

    Google Scholar 

  54. P.F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 3174 (1999)

    ADS  Google Scholar 

  55. N.V. Morrow, S.K. Dutta, G. Raithel, Phys. Rev. Lett. 88, 093003 (2002)

    ADS  Google Scholar 

  56. G. Raithel, W.D. Phillips, S.L. Rolston, Phys. Rev. Lett. 81, 3615 (1998)

    ADS  Google Scholar 

  57. D.A. Steck, K. Jacobs, H. Mabuchi, T. Bhattacharya, S. Habib, Phys. Rev. Lett. 92, 223004 (2004)

    ADS  Google Scholar 

  58. D.A. Steck, K. Jacobs, H. Mabuchi, S. Habib, T. Bhattacharya, Phys. Rev. A 74, 012322 (2006)

    ADS  Google Scholar 

  59. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Nature 452, 72 (2008)

    ADS  Google Scholar 

  60. J.C. Sankey, C. Yang, B.M. Zwickl, A.M. Jayich, J.G.E. Harris, Nat. Phys. 6, 707 (2010)

    Google Scholar 

  61. T. Purdy, D. Brooks, T. Botter, N. Brahms, Z.Y. Ma, D. Stamper-Kurn, Phys. Rev. Lett. 105, 133602 (2010)

    ADS  Google Scholar 

  62. V. Vuletić, J.K. Thompson, A.T. Black, J. Simon, Phys. Rev. A 75, 051405(R) (2007)

    ADS  Google Scholar 

  63. A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe, Nature 462, 898 (2009)

    ADS  Google Scholar 

  64. M. Koch, C. Sames, A. Kubanek, M. Apel, M. Balbach, A. Ourjoumtsev, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 105, 173003 (2010)

    Google Scholar 

  65. T. Fischer, P. Maunz, T. Puppe, P.W.H. Pinkse, G. Rempe, New J. Phys. 11, 1367 (2001)

    Google Scholar 

  66. J.K. Asboth, P. Domokos, H. Ritsch, Phys. Rev. A 70, 013414 (2004)

    ADS  Google Scholar 

  67. M. Gangl, H. Ritsch, Phys. Rev. A 61, 011402 (1999)

    ADS  Google Scholar 

  68. P. Horak, H. Ritsch, Phys. Rev. A 64, 033422 (2001)

    Google Scholar 

  69. A.T. Black, H.W. Chan, V. Vuletić, Phys. Rev. Lett. 91, 203001 (2003)

    ADS  Google Scholar 

  70. P. Domokos, H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002)

    ADS  Google Scholar 

  71. Y. Yoshikawa, Y. Torii, T. Kuga, Phys. Rev. Lett. 94, 083602 (2005)

    ADS  Google Scholar 

  72. P. Wang, L. Deng, E.W. Hagley, Z. Fu, S. Chai, J. Zhang, Phys. Rev. Lett. 106, 210401 (2011)

    ADS  Google Scholar 

  73. R. Bonifacio, L. De Salvo, Nucl. Instrum. Methods Phys. Res. Sect. A 341, 360 (1994)

    Google Scholar 

  74. R. Bonifacio, L. De Salvo, L.M. Narducci, E.J. DAngelo, Phys. Rev. A 50, 1716 (1994)

    Google Scholar 

  75. S. Slama, S. Bux, G. Krenz, C. Zimmermann, P.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)

    ADS  Google Scholar 

  76. S. Slama, G. Krenz, S. Bux, C. Zimmermann, P.W. Courteille, Phys. Rev. A 75, 063620 (2007)

    ADS  Google Scholar 

  77. S. Bux, C. Gnahm, R.A.W. Maier, C. Zimmermann, P.W. Courteille, Phys. Rev. Lett. 106, 203601 (2011)

    ADS  Google Scholar 

  78. K. Baumann, R. Mottl, F. Brennecke, T. Esslinger, Phys. Rev. Lett. 107, 140402 (2011)

    ADS  Google Scholar 

  79. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    ADS  Google Scholar 

  80. S. Gupta, K.L. Moore, K.W. Murch, D.M. Stamper-Kurn, Phys. Rev. Lett. 99, 213601 (2007)

    ADS  Google Scholar 

  81. T. Botter, D. Brooks, S. Gupta, Z.Y. Ma, K.L. Moore, K.W. Murch, T.P. Purdy, D.M. Stamper-Kurn, in Quantum Micro-mechanics with Ultracold Atoms (World Scientific, Singapore, 2009), pp. 117–130

    Google Scholar 

  82. M.H. Schleier-Smith, I.D. Leroux, H. Zhang, M.A. Van Camp, V. Vuletic, Phys. Rev. Lett. 107, 143005 (2011)

    ADS  Google Scholar 

  83. N. Brahms, T.P. Purdy, D.W.C. Brooks, T. Botter, D.M. Stamper-Kurn, Nat. Phys. 7, 604 (2011)

    Google Scholar 

  84. D. Stamper-Kurn, A. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. Pritchard, W. Ketterle, Phys. Rev. Lett. 83, 2876 (1999)

    ADS  Google Scholar 

  85. R. Kanamoto, P. Meystre, Phys. Rev. Lett. 104, 063601 (2010)

    ADS  Google Scholar 

  86. T. Botter, D.W.C. Brooks, N. Brahms, S. Schreppler, D.M. Stamper-Kurn, Phys. Rev. A 85, 013812 (2012)

    ADS  Google Scholar 

  87. B.S. Sheard, M.B. Gray, C.M. Mow-Lowry, D.E. McClelland, S.E. Whitcomb, Phys. Rev. A 69, 051801 (2004)

    ADS  Google Scholar 

  88. T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc, N. Mavalvala, Phys. Rev. A 74, 021802 (2006)

    ADS  Google Scholar 

  89. T. Corbitt, Y.B. Chen, E. Innerhofer, H. Muller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007)

    Google Scholar 

  90. S. Ritter, F. Brennecke, K. Baumann, T. Donner, C. Guerlin, T. Esslinger, App. Phys. B 95, 213 (2009)

    ADS  Google Scholar 

  91. A.D. OConnell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010)

    Google Scholar 

  92. A. Dorsel, J.D. Mccullen, P. Meystre, E. Vignes, H. Walther, Phys. Rev. Lett. 51, 1550 (1983)

    ADS  Google Scholar 

  93. T. Griesser, H. Ritsch, Opt. Express 19, 11242 (2011)

    ADS  Google Scholar 

  94. F. Marino, F.S. Cataliotti, A. Farsi, M.S. de Cumis, F. Marin, Phys. Rev. Lett. 104, 073601 (2010)

    ADS  Google Scholar 

  95. P. Verlot, A. Tavernarakis, T. Briant, P.F. Cohadon, A. Heidmann, Phys. Rev. Lett. 104, 133602 (2010)

    ADS  Google Scholar 

  96. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)

    ADS  Google Scholar 

  97. A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Nature 472, 69 (2011)

    ADS  Google Scholar 

  98. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud, Phys. Rev. A 49, 1337 (1994)

    ADS  Google Scholar 

  99. S. Mancini, P. Tombesi, Phys. Rev. A 49, 4055 (1994)

    ADS  Google Scholar 

  100. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Phys. Rev. D 65, 022002 (2001)

    ADS  Google Scholar 

  101. F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 62, 403 (1989)

    ADS  Google Scholar 

  102. A.D. Boozer, A. Boca, R. Miller, T.E. Northup, H.J. Kimble, Phys. Rev. Lett. 97, 083602 (2006)

    ADS  Google Scholar 

  103. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.D. Lin, L.M. Duan, C.C.J. Wang, J.K. Freericks, C. Monroe, Nat. Commun. 2, 1374 (2011)

    Google Scholar 

  104. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hansel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Google Scholar 

  105. A.H. Safavi-Naeini, J. Chan, J.T. Hill, T.P.M. Alegre, A. Krause, O. Painter, Phys. Rev. Lett. 108, 033602 (2012)

    ADS  Google Scholar 

  106. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Nature 462, 78 (2009)

    ADS  Google Scholar 

  107. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011)

    ADS  Google Scholar 

  108. A. Nunnenkamp, K. Borkje, S.M. Girvin, Phys. Rev. Lett. 107, 063602 (2011)

    ADS  Google Scholar 

  109. J.Q. Liao, H.K. Cheung, C.K. Law, Phys. Rev. A 85, 025803 (2012)

    ADS  Google Scholar 

  110. M. Ludwig, B. Kubala, F. Marquardt, New J. Phys. 10, 095013 (2008)

    ADS  Google Scholar 

  111. J. Qian, A.A. Clerk, K. Hammerer, F. Marquardt, Phys. Rev. Lett. 109, 253601 (2012)

    ADS  Google Scholar 

  112. A. Kronwald, M. Ludwig, F. Marquardt, Phys. Rev. A 87, 013847 (2013)

    ADS  Google Scholar 

  113. T. Hong, H. Yang, H. Miao, Y. Chen, Phys. Rev. A 88, 023812 (2013)

    Google Scholar 

  114. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003)

    ADS  MathSciNet  Google Scholar 

  115. G. Szirmai, D. Nagy, P. Domokos, Phys. Rev. A 81, 043639 (2010)

    ADS  Google Scholar 

  116. R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner, T. Esslinger, Science 336, 1570 (2012)

    ADS  Google Scholar 

  117. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    ADS  MATH  Google Scholar 

  118. D. Nagy, G. Kónya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010)

    ADS  Google Scholar 

  119. G. Chen, X.G. Wang, J.Q. Liang, Z.D. Wang, Phys. Rev. A 78, 023634 (2008)

    ADS  Google Scholar 

  120. S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)

    ADS  Google Scholar 

  121. F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner, T. Esslinger, PNAS 110, 11763 (2013)

    Google Scholar 

  122. J. Keeling, M.J. Bhaseen, B.D. Simons, Phys. Rev. Lett. 105, 043001 (2010)

    ADS  Google Scholar 

  123. M.J. Bhaseen, J. Mayoh, B.D. Simons, J. Keeling, Phys. Rev. A 85, 013817 (2012)

    ADS  Google Scholar 

  124. D. Nagy, G. Szirmai, P. Domokos, Phys. Rev. A 84, 043637 (2011)

    ADS  Google Scholar 

  125. T. Elsasser, B. Nagorny, A. Hemmerich, Phys. Rev. A 69, 033403 (2004)

    ADS  Google Scholar 

  126. W. Chen, D.S. Goldbaum, M. Bhattacharya, P. Meystre, Phys. Rev. A 81, 053833 (2010)

    ADS  Google Scholar 

  127. S.K. Steinke, P. Meystre, Phys. Rev. A 84, 023834 (2011)

    ADS  Google Scholar 

  128. S. Gopalakrishnan, B.L. Lev, P.M. Goldbart, Nat. Phys. 5, 845 (2009)

    Google Scholar 

  129. S. Gopalakrishnan, B.L. Lev, P.M. Goldbart, Phys. Rev. Lett. 107, 277201 (2011)

    Google Scholar 

  130. P. Strack, S. Sachdev, Phys. Rev. Lett. 107, 277202 (2011)

    ADS  Google Scholar 

  131. W. Chen, K. Zhang, D.S. Goldbaum, M. Bhattacharya, P. Meystre, Phys. Rev. A 80, 011801 (2009)

    ADS  Google Scholar 

  132. S. Fernandez-Vidal, G. De Chiara, J. Larson, G. Morigi, Phys. Rev. A 81, 043407 (2010)

    ADS  Google Scholar 

  133. Q. Sun, X.H. Hu, W.M. Liu, X.C. Xie, A.C. Ji, Phys. Rev. A 84, 023822 (2011)

    ADS  Google Scholar 

  134. N. Brahms, D. Stamper-Kurn, Phys. Rev. A 82, 041804(R) (2010)

    ADS  Google Scholar 

Download references

Acknowledgments

The author is deeply grateful to his co-researchers on cQED with cold atoms, whose persistence, curiosity and keen insight led to the development of the optomechanics picture for describing the interactions of trapped gases with single-mode optical cavities. This team includes Thierry Botter, Nathaniel Brahms, Daniel Brooks, Subhadeep Gupta, Zhao-Yuan Ma, Kevin Moore, Kater Murch, Sydney Schreppler, and Thomas Purdy. Additional contributions to the development of the experimental apparatus were made by Kevin Brown, Keshav Dani, Marilena LoVerde, and Guilherme Miranda. I am thankful to T. Esslinger, H.J. Kimble, G. Rempe, H. Ritsch, V. Vuletić, and C. Zimmermann for permission to use figures from their work, and also to A. Nunnenkamp and to P. Rabl for critical readings of the manuscript. Financial support for our research was provided by the DARPA QuIST program, the NSF, the David and Lucile Packard Foundation, a critical seedling grant from DARPA through the AFOSR, and the AFOSR directly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan M. Stamper-Kurn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stamper-Kurn, D.M. (2014). Cavity Optomechanics with Cold Atoms. In: Aspelmeyer, M., Kippenberg, T., Marquardt, F. (eds) Cavity Optomechanics. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55312-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55312-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55311-0

  • Online ISBN: 978-3-642-55312-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics