Parallel Data Processing

  • Hasso Plattner
Chapter

Abstract

In the following, we discuss how to achieve parallelism in in-memory and traditional database management systems. Pipelined parallelism and data parallelism are two approaches to speed up query processing.

References

  1. [Amd67]
    G.M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring) (ACM, New York, 1967), pp. 483–485Google Scholar
  2. [DM98]
    L. Dagum, R. Menon, Openmp: an industry-standard api for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)CrossRefGoogle Scholar
  3. [DG08]
    J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Comm. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  4. [GLS94]
    W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface (MIT Press, Cambridge, MA, 1994)Google Scholar
  5. [Gus88]
    J.L. Gustafson, Reevaluating amdahl’s law. Commun. ACM 31(5), 532–533 (1988)CrossRefGoogle Scholar
  6. [HP11]
    J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 5th edn. (Elsevier Science, Burlington, 2011)Google Scholar
  7. [Li86]
    K. Li, Shared virtual memory on loosely coupled multiprocessors. Ph.D. thesis, New Haven, 1986 (AAI8728365)Google Scholar
  8. [Moo65]
    G. Moore, Cramming more components onto integrated circuits. Electronics 38, 114 ff. (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hasso Plattner
    • 1
  1. 1.Enterprise Platform and Integration ConceptsHasso Plattner InstitutePotsdamGermany

Personalised recommendations