Advertisement

On \(\hat{\mathbb{Z}}\)-Zeta Function

Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 7)

Abstract

We present in this note a definition of zeta function of the field \(\mathbb{Q}\) which incorporates all p-adic L-functions of Kubota-Leopoldt for all p and also so called Soulé classes of the field \(\mathbb{Q}\). This zeta function is a measure, which we construct using the action of the absolute Galois group \(G_{\mathbb{Q}}\) on fundamental groups.

Keywords

Fundamental Group Zeta Function Elliptic Curve Elliptic Curf Galois Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

These research were started in January 2011 during our visit in Max-Planck-Institut für Mathematik in Bonn. We would like to thank very much MPI for support. We would like also thank to Professor C. Greither for invitation on the conference Iwasawa 2008 in Kloster Irsee. We acknowledge the financial help of the Laboratoire de Dieudonné, which allows us to participate in the meeting Iwasawa 2012 in Heidelberg.

References

  1. Coates, J., Sujatha, R.: Cyclotomic Fields and Zeta Values. Springer Monographs in Mathematics. Springer, Berlin (2006)MATHGoogle Scholar
  2. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups over Q. Mathematical Sciences Research Institute Publications, vol. 16, pp. 79–297. Springer, New York (1989)Google Scholar
  3. de Shalit, E.: Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspective in Mathematics, vol. 3. Academic, Boston (1987)Google Scholar
  4. Ichimura, H., Sakaguchi, K.: The non-vanishing of a certain Kummer character χ m (after Soulé), and some related topics. In: Galois Representations and Arithmetic Algebraic Geometry. Advanced Studies in Pure Mathematics, vol. 12, pp. 53–64. Kinokuniya Co./North-Holland/Elsevier, Tokyo/Amsterdam/New York (1987)Google Scholar
  5. Ihara, Y.: Profinite braid groups, Galois representations and complex multiplications. Ann. Math. 123, 43–106 (1986)MathSciNetMATHGoogle Scholar
  6. Ihara, Y.: Braids, Galois groups, and some arithmetic functions. In: Proceedings of the International Congress of Mathematics, Kyoto, pp. 99–120. Springer (1990)Google Scholar
  7. Kubota, T., Leopoldt, H.W.: Eine p-adische Theorie der Zetawerte, I. J. Reine und angew. Math. 214/215, 328–339 (1964)Google Scholar
  8. Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Mathematics, vol. 121. Springer, New York (1990)Google Scholar
  9. Nakamura, H.: On exterior Galois representations associated with open elliptic curves. J. Math. Sci. Univ. Tokyo 2, 197–231 (1995)MathSciNetMATHGoogle Scholar
  10. Nakamura, H.: On arithmetic monodromy representations of Eisenstein type in fundamental groups of once punctured elliptic curves. Publ. RIMS Kyoto Univ. 49(3), 413–496 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. Nakamura, H., Wojtkowiak, Z.: On the explicit formulae for -adic polylogarithms. In: Arithmetic Fundamental Groups and Noncommutative Algebra. Proceedings of Symposia in Pure Mathematics (AMS), vol. 70, pp. 285–294. American Mathematical Society, Providence (2002)Google Scholar
  12. Nakamura, H., Wojtkowiak, Z.: Tensor and homotopy criteria for functional equations of l-adic and classical iterated integrals. In: Non-abelian Fundamental Groups and Iwasawa Theory. London Mathematical Society Lecture Note Series, vol. 393, pp. 258–310. Cambridge University Press, Cambridge/New York (2012)Google Scholar
  13. Soulé, C.: Éléments Cyclotomiques en K-Théorie. Astérisque 147/148, 225–258 (1987)Google Scholar
  14. Wojtkowiak, Z.: On -adic iterated integrals, I analog of Zagier conjecture. Nagoya Math. J. 176, 113–158 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. Wojtkowiak, Z.: On -adic iterated integrals, II functional equations and l-adic polylogarithms. Nagoya Math. J. 177, 117–153 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. Wojtkowiak, Z.: On -adic Galois periods, relations between coefficients of Galois representations on fundamental groups of a projective line minus a finite number of points. Publ. Math. de Besançon, Algèbra et Théorie des Nombres, 2007–2009, pp. 155–174, Février (2009)Google Scholar
  17. Wojtkowiak, Z.: On -adic Galois L-functions (2014). arXiv:1403.2209 [math.NT]Google Scholar
  18. Yager, R.I.: On two variable p-adic L-functions. Ann. Math. 115, 411–449 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire Jean Alexandre Dieudonné, U.R.A. au C.N.R.S., No 168, Département de MathématiquesUniversité de Nice-Sophia AntipolisNice Cedex 2France

Personalised recommendations