Skip to main content

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

Abstract

Numerical integration is a common sub-problem in many applications. It can be solved easily in CPU-based applications using adaptive quadrature such as the adaptive Simpson’s rule. These algorithms rely, however, on error estimation yielding a significant computational overhead. In addition, they require recursive function evaluations, which are not well suited for parallel computation on graphics processing units (GPUs) due to warp divergence issues. In this paper, we introduce heuristic forward quadrature as an alternative that is not only more efficient than traditional methods, but also better suited for accelerated massively-parallel calculation on GPUs. Additionally, we will give an error estimate for our method and demonstrate performance results for 1D and 2D integral applications which show that the algorithm leverages quadrature for the efficient implementation on GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising performance of quadrature methods with reduced precision. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 251–263. Springer, Heidelberg (2012)

    Google Scholar 

  2. Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: An efficient deterministic parallel algorithm for adaptive multidimensional numerical integration on GPUs. http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0237_KameshArumugam.pdf (2013)

  3. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines. J. Comput. Appl. Math. 25(3), 327–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berntsen, J., Espelid, T.O., Sørevik, T.: On the subdivision strategy in adaptive quadrature algorithms. J. Comput. Appl. Math. 35(1), 119–132 (1991)

    Article  MATH  Google Scholar 

  5. Black, F., Scholes, M.: Taxes and the pricing of options. J. Finan. 31(2), 319–332 (1976)

    Article  Google Scholar 

  6. Gander, W., Gautschi, W.: Adaptive quadrature revisited. BIT Numer. Math. 40(1), 84–101 (2000)

    Article  MathSciNet  Google Scholar 

  7. McKeeman, W.M., Tesler, L.: Algorithm 182: nonrecursive adaptive integration. Commun. ACM 6(6), 315 (1963). http://doi.acm.org/10.1145/366604.366640

  8. NVIDIA: CUDA Compute Unified Device Architecture. www.nvidia.com/object/cuda_home_new.html

  9. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  10. Piessens, R., Doncker-Kapenga, D., Ăśberhuber, C., Kahaner, D., et al.: Quadpack, A Subroutine Package for Automatic Integration, 301 p. Springer, Heidelberg (1983)

    Google Scholar 

  11. Podlozhnyuk, V.: Black-scholes option pricing. Part of CUDA SDK documentation (2007)

    Google Scholar 

  12. Shapiro, H.D.: Increasing robustness in global adaptive quadrature through interval selection heuristics. ACM Trans. Math. Softw. (TOMS) 10(2), 117–139 (1984)

    Article  MATH  Google Scholar 

  13. Thuerck, D., Kuijper, A.: Cosine-driven non-linear denoising. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 245–254. Springer, Heidelberg (2013)

    Google Scholar 

  14. Thuerck, D., Kuijper, A.: Lazy nonlinear diffusion parameter estimation. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 211–220. Springer, Heidelberg (2013)

    Google Scholar 

  15. Windisch, A., Alkofer, R., Haase, G., Liebmann, M.: Examining the analytic structure of greens functions: Massive parallel complex integration using GPUs. Comput. Phys. Commun. 184, 101–116 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Thuerck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thuerck, D., Widmer, S., Kuijper, A., Goesele, M. (2014). Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics