Abstract
Numerical integration is a common sub-problem in many applications. It can be solved easily in CPU-based applications using adaptive quadrature such as the adaptive Simpson’s rule. These algorithms rely, however, on error estimation yielding a significant computational overhead. In addition, they require recursive function evaluations, which are not well suited for parallel computation on graphics processing units (GPUs) due to warp divergence issues. In this paper, we introduce heuristic forward quadrature as an alternative that is not only more efficient than traditional methods, but also better suited for accelerated massively-parallel calculation on GPUs. Additionally, we will give an error estimate for our method and demonstrate performance results for 1D and 2D integral applications which show that the algorithm leverages quadrature for the efficient implementation on GPUs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising performance of quadrature methods with reduced precision. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 251–263. Springer, Heidelberg (2012)
Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: An efficient deterministic parallel algorithm for adaptive multidimensional numerical integration on GPUs. http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0237_KameshArumugam.pdf (2013)
Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines. J. Comput. Appl. Math. 25(3), 327–340 (1989)
Berntsen, J., Espelid, T.O., Sørevik, T.: On the subdivision strategy in adaptive quadrature algorithms. J. Comput. Appl. Math. 35(1), 119–132 (1991)
Black, F., Scholes, M.: Taxes and the pricing of options. J. Finan. 31(2), 319–332 (1976)
Gander, W., Gautschi, W.: Adaptive quadrature revisited. BIT Numer. Math. 40(1), 84–101 (2000)
McKeeman, W.M., Tesler, L.: Algorithm 182: nonrecursive adaptive integration. Commun. ACM 6(6), 315 (1963). http://doi.acm.org/10.1145/366604.366640
NVIDIA: CUDA Compute Unified Device Architecture. www.nvidia.com/object/cuda_home_new.html
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Piessens, R., Doncker-Kapenga, D., Ăśberhuber, C., Kahaner, D., et al.: Quadpack, A Subroutine Package for Automatic Integration, 301 p. Springer, Heidelberg (1983)
Podlozhnyuk, V.: Black-scholes option pricing. Part of CUDA SDK documentation (2007)
Shapiro, H.D.: Increasing robustness in global adaptive quadrature through interval selection heuristics. ACM Trans. Math. Softw. (TOMS) 10(2), 117–139 (1984)
Thuerck, D., Kuijper, A.: Cosine-driven non-linear denoising. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 245–254. Springer, Heidelberg (2013)
Thuerck, D., Kuijper, A.: Lazy nonlinear diffusion parameter estimation. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 211–220. Springer, Heidelberg (2013)
Windisch, A., Alkofer, R., Haase, G., Liebmann, M.: Examining the analytic structure of greens functions: Massive parallel complex integration using GPUs. Comput. Phys. Commun. 184, 101–116 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thuerck, D., Widmer, S., Kuijper, A., Goesele, M. (2014). Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-55224-3_61
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55223-6
Online ISBN: 978-3-642-55224-3
eBook Packages: Computer ScienceComputer Science (R0)