Skip to main content

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

  • 1577 Accesses

Abstract

We investigate the behavior of the Lanczos process when it is used to find all the eigenvalues of large sparse symmetric matrices. We study the convergence of classical Lanczos (i.e., without re-orthogonalization) to the point where there is a cluster of Ritz values around each eigenvalue of the input matrix A. At that point, convergence to all the eigenvalues can be ascertained if A has no multiple eigenvalues. To eliminate multiple eigenvalues, we disperse them by adding to A a random matrix with a small norm; using high-precision arithmetic, we can perturb the eigenvalues and still produce accurate double-precision results. Our experiments indicate that the speed with which Ritz clusters form depends on the local density of eigenvalues and on the unit roundoff, which implies that we can accelerate convergence by using high-precision arithmetic in computations involving the Lanczos iterates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used the lapack unsymmetric eigensolver dgeev to compute the eigenvalues. Although the symmetric subroutine dsyev is more efficient, we did not use it here.

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  2. Calvetti, D., Reichel, L., Sorensen, D.C.: An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2, 1–21 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. 1 Theory. Birkhäuser, Basel (1985)

    Google Scholar 

  4. Davies, E.B.: Approximate diagonalization. SIAM J. Matrix Anal. Appl. 29, 1051–1064 (2007)

    Article  MathSciNet  Google Scholar 

  5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1:1–1:25 (2011)

    MathSciNet  Google Scholar 

  6. Dhillon, I.S., Parlett, B.N., Vömel, C.: Glued matrices and the MRRR algorithm. SIAM J. Sci. Comput. 27, 496–510 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dhillon, I.S., Parlett, B.N., Vömel, C.: The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. 32, 533–560 (2006)

    Article  MATH  Google Scholar 

  8. Druskin, V.L., Knizhnerman, L.A.: Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues. USSR Comput. Math. Math. Phys. 31(7), 20–30 (1991)

    MathSciNet  Google Scholar 

  9. Edwards, J.T., Licciardello, D.C., Thouless, D.J.: Use of the Lanczos method for finding complete sets of eigenvalues of large sparse symmetric matrices. J. Inst. Math. Appl. 23, 277–283 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Grcar, J.F.: Analyses of the Lanczos algorithm and of the approximation problem in Richardson’s method. Ph.D. thesis, University of Illinois at Urbana-Champaign (1981)

    Google Scholar 

  12. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113, 7–63 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kalkreuter, T.: Study of Cullum’s and Willoughby’s Lanczos method for Wilson fermions. Comput. Phys. Commun. 95, 1–16 (1996)

    Article  MATH  Google Scholar 

  14. Knizhnerman, L.A.: The quality of approximations to a well-isolated eigenvalue, and the arrangement of “Ritz numbers” in a simple Lanczos process. Comput. Math. Math. Phys. 35(10), 1175–1187 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45(4), 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  16. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. SIAM, Philadelphia (1997)

    Google Scholar 

  17. Meurant, G.: The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  18. Nakata, M.: The MPACK: multiple precision arithmetic BLAS and LAPACK. http://mplapack.sourceforge.net/ (2010)

  19. Parlett, B.N., Reid, J.K.: Tracking the progress of the Lanczos algorithm for large symmetric eigenproblems. IMA J. Numer. Anal. 1, 135–155 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective orthogonalization. Math. Comp. 33, 217–238 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Parlett, B.N., Simon, H., Stringer, L.M.: On estimating the largest eigenvalue with the Lanczos algorithm. Math. Comp. 38, 153–165 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Parlett, B.: Misconvergence in the Lanczos algorithm. In: Cox, M., Hammarling, S. (eds.) Reliable Numerical Computation, pp. 7–24. Clarendon Press, Oxford (1990)

    Google Scholar 

  23. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  24. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  25. Simon, H.D.: Analysis of the symmetric Lanczos algorithm with reorthogonalization methods. Linear Algebra Appl. 61, 101–131 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math. Comp. 42, 115–142 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. van der Sluis, A., van der Vorst, H.A.: The convergence behavior of Ritz values in the presence of close eigenvalues. Linear Algebra Appl. 88–89, 651–694 (1987)

    Article  Google Scholar 

  28. Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52, 76–84 (2009)

    Article  Google Scholar 

  29. Stewart, G.W.: Matrix Algorithms, Volume 2: Eigensystems. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  30. Strakoš, Z., Greenbaum, A.: Open questions in the convergence analysis of the Lanczos process for the real symmetric eigenvalue problem. IMA Preprint 934, University of Minnesota (1992)

    Google Scholar 

  31. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wülling, W.: The stabilization of weights in the Lanczos and conjugate gradient method. BIT Numer. Math. 45, 395–414 (2005)

    Article  MATH  Google Scholar 

  33. Wülling, W.: On stabilization and convergence of clustered Ritz values in the Lanczos method. SIAM J. Matrix Anal. Appl. 27, 891–908 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referees for their valuable comments. The idea of using first-order corrections that we discuss in Sect. 2 was proposed by one of the referees.

 This research was supported in part by grant 1045/09 from the Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities), and by grant 2010231 from the US–Israel Binational Science Foundation.

 The first author was at Tel Aviv University while conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Druinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alperovich, A., Druinsky, A., Toledo, S. (2014). Experiences with a Lanczos Eigensolver in High-Precision Arithmetic. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics