Skip to main content

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure to Antimicrobials

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

Abstract

We present a numerical method for a highly nonlinear PDE model of biofilm response to antibiotics with three nonlinear diffusion effects: (i) porous medium degeneracy, (ii) super-diffusion singularity, (iii) nonlinear cross-diffusion. The scheme is based on a Finite Volume discretization in space and semi-implicit, non-local time integration. The resulting discretized system is implemented in Fortran and parallelized with OpenMP. The numerical method is validated in a simulation study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chambless, J.D., Hunt, S.M., Stewart, P.S.: A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl. Env. Microbiol. 72, 2005–2013 (2006)

    Article  Google Scholar 

  2. Costerton, J.W.: The Biofilm Primer. Springer, Heidelberg (2007)

    Book  Google Scholar 

  3. Dimitrov, D.T., Kojouharov, H.V.: Dynamically consistent numerical methods for general productive-destructive systems. J. Diff. Equs. Appls. 17(12), 1721–1736 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eberl, H.J., Demaret, L.: A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. El. J. Diff. Equs. CS 15, 77–95 (2007)

    MathSciNet  Google Scholar 

  5. Eberl, H.J., Parker, D.F., van Loosdrecht, M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161–175 (2001)

    Article  MATH  Google Scholar 

  6. Eberl, H.J., Sudarsan, R.: Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J. Theor. Biol. 253, 788–807 (2008)

    Article  MathSciNet  Google Scholar 

  7. Efendiev, M.A., Zelik, S.V., Eberl, H.J.: Existence and longtime behavior of a biofilm model. Comm. Pure Appl. Anal. 8, 509–531 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hundsdorfer, W., Verweer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  9. Jalbert, E., Eberl, H.J.: Numerical computation of sharp travelling wave solutions of a simplified biofilm model. Comm. Nonlin. Sci. Num. Sim. (in press)

    Google Scholar 

  10. Mickens, R.E.: Nonstandard finite difference schemes. In: Mickens, R.E. (ed.) Applications of Nonstandard Finite Difference Schemes, pp. 155–180. World Scientific, Singapore (2000)

    Google Scholar 

  11. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  12. Muhammad, N., Eberl, H.J.: OpenMP parallelization of a Mickens time-integration scheme for a mixed-culture biofilm model and its performance on multi-core and multi-processor computers. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 180–195. Springer, Heidelberg (2010)

    Google Scholar 

  13. Muhammad, N., Eberl, H.J.: Model parameter uncertainties in a dual-species biofilm competition model affect ecological output parameters much stronger than morphological ones. Math. Biosci. 233, 1–18 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rahman, K.A., Eberl, H.J.: Cross-diffusion in biofilms (in preparation)

    Google Scholar 

  15. Saad, Y.: SPARSKIT: a basic tool-kit for sparse matrix computations. http://www-users.cs.umn.edu/saad/software/SPARSKIT/index.html (1994)

  16. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  17. Samarskii, A.A., Mikhailov, A.P., Galaktionov, V.A., Kurdumov, S.P.: Blow-Up in Quasilinear Parabolic Equations. DeGruyter, Berlin (1995)

    Book  MATH  Google Scholar 

  18. Wanner, O., Eberl, H., Morgenorth, E., Noguera, D., Picioreanu, D., Rittmann, B., van Loosdrecht, M.: Mathematical Modelling of Biofilms. IWA Publishing, London (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Eberl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, K., Eberl, H.J. (2014). Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure to Antimicrobials. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics