Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Annual International Conference on the Theory and Applications of Cryptographic Techniques

EUROCRYPT 2014: Advances in Cryptology – EUROCRYPT 2014 pp 40–57Cite as

  1. Home
  2. Advances in Cryptology – EUROCRYPT 2014
  3. Conference paper
Symmetrized Summation Polynomials: Using Small Order Torsion Points to Speed Up Elliptic Curve Index Calculus

Symmetrized Summation Polynomials: Using Small Order Torsion Points to Speed Up Elliptic Curve Index Calculus

  • Jean-Charles Faugère17,18,19,
  • Louise Huot18,17,19,
  • Antoine Joux20,21,18,19,
  • Guénaël Renault18,17,19 &
  • …
  • Vanessa Vitse22 
  • Conference paper
  • 3722 Accesses

  • 4 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8441)

Abstract

Decomposition-based index calculus methods are currently efficient only for elliptic curves E defined over non-prime finite fields of very small extension degree n. This corresponds to the fact that the Semaev summation polynomials, which encode the relation search (or “sieving”), grow over-exponentially with n. Actually, even their computation is a first stumbling block and the largest Semaev polynomial ever computed is the 6-th. Following ideas from Faugère, Gaudry, Huot and Renault, our goal is to use the existence of small order torsion points on E to define new summation polynomials whose symmetrized expressions are much more compact and easier to compute. This setting allows to consider smaller factor bases, and the high sparsity of the new summation polynomials provides a very efficient decomposition step. In this paper the focus is on 2-torsion points, as it is the most important case in practice. We obtain records of two kinds: we successfully compute up to the 8-th symmetrized summation polynomial and give new timings for the computation of relations with degree 5 extension fields.

Keywords

  • ECDLP
  • elliptic curves
  • decomposition method
  • index calculus
  • Semaev polynomials
  • multivariate polynomial systems
  • invariant theory

This work has been partially supported by the LabExPERSYVAL-Lab(ANR-11-LABX-0025) and the HPAC grant of the French National Research Agency (HPAC ANR-11-BS02-013).

Download conference paper PDF

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra and number theory, London (1993)

    Google Scholar 

  2. Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math. 147(1), 75–104 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Faugère, J.-C.: FGb: A Library for Computing Gröbner Bases. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  4. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm. J. Cryptology, 1–41 (2013), doi:10.1007/s00145-013-9158-5.

    Google Scholar 

  5. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput. 16(4), 329–344 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symbolic Comput. 44(12), 1690–1702 (2008)

    CrossRef  MathSciNet  Google Scholar 

  7. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)

    CrossRef  MathSciNet  Google Scholar 

  8. Granger, R., Joux, A., Vitse, V.: New timings for oracle-assisted SDHP on the IPSEC Oakley ’Well Known Group’ 3 curve. Announcement on the NBRTHRY Mailing List (July 2010), http://listserv.nodak.edu/archives/nmbrthry.html

  9. IETF. The Oakley key determination protocol. IETF RFC 2412 (1998)

    Google Scholar 

  10. Joux, A., Vitse, V.: Cover and Decomposition Index Calculus on Elliptic Curves made practical: Application to a seemingly secure curve over \(\mathbb{F}_{p^6}\). In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree extension fields. J. Cryptology 26(1), 119–143 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and Diffie-Hellman problems. J. Math. Cryptol. 2(4), 311–326 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Semaev, I.A.: Summation polynomials and the discrete logarithm problem on elliptic curves. Cryptology ePrint Archive, Report 2004/031 (2004)

    Google Scholar 

  14. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Zippel, R.: Interpolating polynomials from their values. Journal of Symbolic Computation 9(3), 375–403 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA, POLSYS, Centre Paris-Rocquencourt, F-78153, Le Chesnay, France

    Jean-Charles Faugère, Louise Huot & Guénaël Renault

  2. Sorbonne Universités, UPMC Univ Paris 06, LIP6 UPMC, F-75005, Paris, France

    Jean-Charles Faugère, Louise Huot, Antoine Joux & Guénaël Renault

  3. CNRS, UMR 7606, LIP6 UPMC, F-75005, Paris, France

    Jean-Charles Faugère, Louise Huot, Antoine Joux & Guénaël Renault

  4. CryptoExperts, Paris, France

    Antoine Joux

  5. Chaire de Cryptologie de la Fondation UPMC, France

    Antoine Joux

  6. Institut Fourier, Université Joseph Fourier, Grenoble I, France

    Vanessa Vitse

Authors
  1. Jean-Charles Faugère
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Louise Huot
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Antoine Joux
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Guénaël Renault
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Vanessa Vitse
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Départment d’informatique, Ecole normale supérieure, 45, rue d’Ulm, 75230, Paris Cedex 05, France

    Phong Q. Nguyen

  2. Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK

    Elisabeth Oswald

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 International Association for Cryptologic Research

About this paper

Cite this paper

Faugère, JC., Huot, L., Joux, A., Renault, G., Vitse, V. (2014). Symmetrized Summation Polynomials: Using Small Order Torsion Points to Speed Up Elliptic Curve Index Calculus. In: Nguyen, P.Q., Oswald, E. (eds) Advances in Cryptology – EUROCRYPT 2014. EUROCRYPT 2014. Lecture Notes in Computer Science, vol 8441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55220-5_3

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-55220-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55219-9

  • Online ISBN: 978-3-642-55220-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.117.1

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.