Advertisement

Salvaging Indifferentiability in a Multi-stage Setting

  • Arno Mittelbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8441)

Abstract

The indifferentiability framework by Maurer, Renner and Holenstein (MRH; TCC 2004) formalizes a sufficient condition to safely replace a random oracle by a construction based on a (hopefully) weaker assumption such as an ideal cipher. Indeed, many indifferentiable hash functions have been constructed and could since be used in place of random oracles. Unfortunately, Ristenpart, Shacham, and Shrimpton (RSS; Eurocrypt 2011) discovered that for a large class of security notions, the MRH composition theorem actually does not apply. To bridge the gap they suggested a stronger notion called reset indifferentiability and established a generalized version of the MRH composition theorem. However, as recent works by Demay et al. (Eurocrypt 2013) and Baecher et al. (Asiacrypt 2013) brought to light, reset indifferentiability is not achievable thereby re-opening the quest for a notion that is sufficient for multi-stage games and achievable at the same time.

We present a condition on multi-stage games called unsplittability. We show that if a game is unsplittable for a hash construction then the MRH composition theorem can be salvaged. Unsplittability captures a restricted yet broad class of games together with a set of practical hash constructions including HMAC, NMAC and several Merkle-Damgård variants. We show unsplittability for the chosen distribution attack (CDA) game (Bellare et al., Asiacrypt 2009), a multi-stage game capturing the security of deterministic encryption schemes; for message-locked encryption (Bellare et al.; Eurocrypt 2013) a related primitive that allows for secure deduplication; for universal computational extractors (UCE) (Bellare et al., Crypto 2013), a recently introduced standard model assumption to replace random oracles; as well as for the proof-of-storage game given by Ristenpart et al. as a counterexample to the general applicability of the indifferentiability framework.

Keywords

Hash Function Random Oracle Compression Function Random Oracle Model Composition Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to NIST (Round 3) (2010), http://131002.net/blake/blake.pdf
  2. 2.
    Baecher, P., Brzuska, C., Mittelbach, A.: Reset indifferentiability and its consequences. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 154–173. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Johansson and Nguyen [22], pp. 296–312Google Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press (November 1993)Google Scholar
  9. 9.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., Gill, J.: Relative to a random oracle A, P A ≠ NP A ≠ coNP A with probability 1. SIAM Journal on Computing 10(1), 96–113 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak SHA-3 submission. Submission to NIST, Round 3 (2011), http://keccak.noekeon.org/Keccak-submission-3.pdf
  12. 12.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions (2011)Google Scholar
  13. 13.
    Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions and optimal bounds of popular domain extensions. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  15. 15.
    Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Damgård, I.: A design principle for hash functions. In: Brassard [14], pp. 416–427Google Scholar
  17. 17.
    Demay, G., Gazi, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In: Johansson and Nguyen [22], pp. 664-683Google Scholar
  18. 18.
    Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space from duplicate files in a serverless distributed file system. In: ICDCS, pp. 617–624 (2002)Google Scholar
  20. 20.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The skein hash function family. Submission to NIST (Round 3) (2010), http://www.skein-hash.info/sites/default/files/skein1.3.pdf
  21. 21.
    Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grstl – a SHA-3 candidate. Submission to NIST (Round 3) (2011), http://www.groestl.info/Groestl.pdf
  22. 22.
    Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  23. 23.
    Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Luykx, A., Andreeva, E., Mennink, B., Preneel, B.: Impossibility results for indifferentiability with resets. Cryptology ePrint Archive, Report 2012/644 (2012), http://eprint.iacr.org/2012/644
  25. 25.
    Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Merkle, R.C.: One way hash functions and DES. In: Brassard [14], pp. 428–446Google Scholar
  27. 27.
    Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. Cryptology ePrint Archive, Report 2013/286 (2013), http://eprint.iacr.org/2013/286
  28. 28.
    Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of indifferentiability and universal composability. Cryptology ePrint Archive, Report 2011/339 (2011), http://eprint.iacr.org/2011/339
  29. 29.
    Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321 (Informational) (April 1992), http://www.ietf.org/rfc/rfc1321.txt (updated by RFC 6151)
  31. 31.
    Wu, H.: The hash function JH. Submission to NIST (round 3) (2011), http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Arno Mittelbach
    • 1
  1. 1.Darmstadt University of TechnologyGermany

Personalised recommendations