Cellular Model of Pedestrian Dynamics with Adaptive Time Span

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8385)

Abstract

A cellular model of pedestrian dynamics based on the Floor Field model is presented. Contrary to the parallel update in Floor Field, the concept of adaptive time span is introduced. This concept, together with the concept of bounds, supports the spontaneous line formation and chaotic queue in front of the bottleneck. Model simulations are compared to the experiment “passing through”, from which a phase transition from low to high density is observed.

Keywords

Pedestrian dynamics Experimental study of phase transition Adaptive time span 

Notes

Acknowledgements

This work was supported by the grant SGS12/197/OHK4/3T/14 and by the MSMT research program under the contract MSM 6840770039.

References

  1. 1.
    Hrabák, P., Bukáček, M., Krbálek, M.: Cellular model of room evacuation based on occupancy and movement prediction. J. Cell. Autom. 8(5–6), 383–393 (2013)Google Scholar
  2. 2.
    Ezaki, T., Yanagisawa, D., Nishinari, K.: Analysis on a single segment of evacuation network. J. Cell. Atom. 8(5–6), 347–359 (2013)Google Scholar
  3. 3.
    Klüpfel, H., Schreckenberg, M., Meyer-König, T.: Models for crowd movement and egress simulation. In: Hoogendoorn, S., Luding, S., Bovy, P., Schreckenberg, M., Wolf, D. (eds.) Traffic and Granular Flow 03, pp. 357–372. Springer, Berlin (2005)CrossRefGoogle Scholar
  4. 4.
    Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B. V, Amsterdam (2010)Google Scholar
  5. 5.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. App. 312(12), 260–276 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E–87D, 726–732 (2004)Google Scholar
  7. 7.
    Kretz, T., Schreckenberg, M.: The F.A.S.T.-Model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 712–715. Springer, Heidelberg (2006) Google Scholar
  8. 8.
    Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and their implications for cellular automata models. In: Timmermans, H. (ed.) Pedestrian Behavior - Models, Data Collection and Applications, pp. 27–43. Emerald Group, Bingley (2009)Google Scholar
  9. 9.
    Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2005, pp. 369–375. Springer, Berlin (2007)CrossRefGoogle Scholar
  10. 10.
    Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (rca). Phys. A Stat. Mech. App. 379(2), 654–660 (2007)CrossRefGoogle Scholar
  11. 11.
    Kretz, T., Kaufman, M., Schreckenberg, M.: Counterflow Extension for the F.A.S.T.-Model. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 555–558. Springer, Heidelberg (2008) Google Scholar
  12. 12.
    Steffen, B.: A modification of the social force model by foresight. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 677–682. Springer, Berlin (2010)CrossRefGoogle Scholar
  13. 13.
    Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Phys. A Stat. Mech. App. 391(12), 248–263 (2012)CrossRefGoogle Scholar
  14. 14.
    Weng, W.G., Chen, T., Yuan, H.Y., Fan, W.C.: Cellular automaton simulation of pedestrian counter flow with different walk velocities. Phys. Rev. E 74, 036102 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marek Bukáček
    • 1
  • Pavel Hrabák
    • 1
  • Milan Krbálek
    • 1
  1. 1.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations