Abstract
A hybrid genetic algorithm for global multi-objective optimization is parallelized and applied to solve competitive facility location problems. The impact of usage of the local search on the performance of the parallel algorithm has been investigated. An asynchronous version of the parallel genetic algorithm with the local search has been proposed and investigated by solving competitive facility location problem utilizing hybrid distributed and shared memory parallel programming model on high performance computing system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models: a survey. Pap. Reg. Sci. 65, 47–57 (1998)
Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129(3), 461–470 (2001)
ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184(3), 817–848 (2008)
Huff, D.L.: Defining and estimating a trade area. J. Mark. 28, 34–38 (1964)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)
Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI’85, vol. 1, pp. 593–595. Morgan Kaufmann, San Francisco (1985)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2, 221–248 (1994)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical Report C3P 826, California Institute of Technology (1989)
Mitra, K., Deb, K., Gupta, S.K.: Multiobjective dynamic optimization of an industrial nylon 6 semibatch reactor using genetic algorithms. J. Appl. Polym. Sci. 69(1), 69–87 (1998)
Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic algorithm design of Pareto optimal broadband microwave absorbers. IEEE Trans. Electromagn. Compat. 38(3), 518–525 (1996)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Lančinskas, A., Žilinskas, J., Ortigosa, P.M.: Local optimization in global multi-objective optimization algorithms. In: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 323–328. doi:10.1109/NaBIC.2011.6089613 (2011)
Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal. Model. Control 18(3), 293–313 (2013)
Branke, J., Schmeck, H., Deb, K., Reddy, S.M.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: CEC2004 Congress on Evolutionary Computation, vol. 2, pp. 1952–1957 (2004)
Deb, K., Zope, P., Jain, S.: Distributed computing of Pareto-optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)
Streichert, F., Ulmer, H., Zell, A.: Parallelization of multi-objective evolutionary algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)
Lančinskas, A., Žilinskas, J.: Approaches to parallelize Pareto ranking in NSGA-II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012)
Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 422–433. Springer, Heidelberg (2013)
Acknowledgments
This research was funded by a Grant (No. MIP-063/2012) from the Research Council of Lithuania.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lančinskas, A., Žilinskas, J. (2014). Parallel Multi-objective Memetic Algorithm for Competitive Facility Location. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-55195-6_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55194-9
Online ISBN: 978-3-642-55195-6
eBook Packages: Computer ScienceComputer Science (R0)