Smith, T., Waterman, M.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)
CrossRef
Google Scholar
Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 707–708 (1982)
CrossRef
Google Scholar
Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Nat. Acad. Sci. USA 85, 2444–2448 (1988)
CrossRef
Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
CrossRef
Google Scholar
Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence Weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22, 4673–4680 (1994)
CrossRef
Google Scholar
Liu, Y., Schmidt, B., Maskell, D.L.: MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26, 1958–1964 (2010)
CrossRef
Google Scholar
Liu, Y., Schmidt, B., Maskell, D.L.: CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28, 1830–1837 (2012)
CrossRef
Google Scholar
Alachiotis, N., Berger, S.A., Stamatakis, A.: Coupling SIMD and SIMT architectures to boost performance of a phylogeny-aware alignment kernel. BMC Bioinform. 13, 196 (2012)
CrossRef
Google Scholar
Liu, C.M., Wong, T., Wu, E., Luo, R., Yiu, S.M., Li, Y., Wang, B., Yu, C., Chu, X., Zhao, K., Li, R., Lam, T.W.: SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics 28, 878–879 (2011)
CrossRef
Google Scholar
Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J.Y., Bae, S.H., Li, H., Zhang, B., Wu, T.L., Ruan, Y., Ekanayake, S., Hughes, A., Fox, G.: Hybrid cloud and cluster computing paradigms for life science applications. BMC Bioinform. 11, S3 (2010)
CrossRef
Google Scholar
Liu, Y., Maskell, D.L., Schmidt, B.: CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units. BMC Res. Notes 2, 73 (2009)
CrossRef
Google Scholar
Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.L.: Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21, 3431–3432 (2005)
CrossRef
Google Scholar
Oliver, T., Schmidt, B., Maskell, D.L.: Reconfigurable architectures for bio-sequence database scanning on FPGAs. IEEE Trans. Circuit Syst. II 52, 851–855 (2005)
CrossRef
Google Scholar
Li, T.I., Shum, W., Truong, K.: 160-fold acceleration of the Smith-Waterman algorithm using a Field Programmable Gate Array (FPGA). BMC Bioinform. 8, I85 (2007)
CrossRef
Google Scholar
Wozniak, A.: Using video-oriented instructions to speed up sequence comparison. Comput. Appl. Biosci. 13, 145–150 (1997)
Google Scholar
Rognes, T., Seeberg, E.: Six-fold speedup of Smith-Waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 16, 699–706 (2000)
CrossRef
Google Scholar
Farrar, M.: Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23, 156–161 (2007)
CrossRef
Google Scholar
Alpern, B., Carter, L., Gatlin, K.S.: Microparallelism and high performance protein matching. In: Proceedings of the 1995 ACM/IEEE Supercomputing Conference (1995)
Google Scholar
Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD parallelization. BMC Bioinform. 12, 221 (2011)
CrossRef
Google Scholar
Wirawan, A., Kwoh, C.K., Hieu, N.T., Schmidt, B.: CBESW: sequence alignment on Playstation 3. BMC Bioinform. 9, 377 (2008)
CrossRef
Google Scholar
Szalkowski, A., Ledergerber, C., Krahenbuhl, P., Dessimoz, C.: SWPS3 fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Res. Notes 1, 107 (2008)
CrossRef
Google Scholar
Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Streaming algorithms for biological sequence alignment on GPUs. IEEE Trans. Parallel Distrib. Syst. 18, 1270–1281 (2007)
CrossRef
Google Scholar
Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinform. 9, S10 (2008)
CrossRef
Google Scholar
Ligowski, L., Rudnicki, W.: An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases. In: 2009 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8 (2009)
Google Scholar
Liu, Y., Schmidt, B., Maskel, D.L.: CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Res. Notes 3, 93 (2010)
CrossRef
Google Scholar
Khajeh-Saeed, A., Poole, S., Perot, J.: Acceleration of the Smith Waterman algorithm using single and multiple graphics processors. J. Comput. Phys. 229, 4247–4258 (2010)
CrossRef
MATH
MathSciNet
Google Scholar
Blazewicz, J., Frohmberg, W., Kierzynka, M., Pesch, E., Wojciechowski, P.: Protein alignment algorithms with an efficient backtracking routine on multiple GPUs. BMC Bioinform. 12, 181 (2011)
CrossRef
Google Scholar
Hains, D., Cashero, Z., Ottenberg, M., Bohm, W., Rajopadhye, S.: Improving CUDASW++, a parallelization of Smith-Waterman for CUDA enabled devices. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 490–501 (2011)
Google Scholar
de Oliveira Sandes, E.F., de Melo, A.C.M.: Retrieving Smith-Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans. Parallel Distrib. Syst. 24(5), 1009–1021 (2013)
CrossRef
Google Scholar
Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14, 117 (2013)
CrossRef
Google Scholar
Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: multiple sequence alignment on graphics processing units with CUDA. In: 20th IEEE International Conference on Application-Specific Systems, Architectures and Processors (2009)
Google Scholar
Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17 (1988)
Google Scholar
Darling, A., Carey, L., Feng, W.: The design, implementation, and evaluation of mpiBLAST. In: 4th International Conference on Linux Clusters: The HPC Revolution 2003 in Conjunction with ClusterWorld Conference and Expo (2003)
Google Scholar
Oehmen, C.S., Baxter, J.: ScalaBLAST 2.0: rapid and robust BLAST calculations on multiprocessor systems. Bioinformatics 29, 797–798 (2013)
CrossRef
Google Scholar
Wu, C., Kalyanaraman, A., Cannon, W.R.: pGraph: efficient parallel construction of large-scale protein sequence homology graphs. IEEE Trans. Parallel Distrib. Syst. 23, 1923–1933 (2012)
CrossRef
Google Scholar
Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. PNAS 89, 10915–10919 (1992)
CrossRef
Google Scholar
Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–358. National Biomedical Research Foundation, Washington DC (1978)
Google Scholar
Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified graphics and computing architecture. IEEE Micro 28, 3955 (2008)
CrossRef
Google Scholar
NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi. NVIDIA Corporation Whitepaper (2009)
Google Scholar
NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Kepler GK110. NVIDIA Corporation Whitepaper (2012)
Google Scholar
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup: the sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)
CrossRef
Google Scholar
Liu, Y., Schmidt, B., Maskell, D.L.: Parallel reconstruction of neighbor-joining trees for large multiple sequence alignments using CUDA. In: IEEE International Symposium on Parallel and Distributed Processing (2009)
Google Scholar
Rizk, G., Lavenier, D.: GASSST: global alignment short sequence search tool. Bioinformatics 26, 2534–2540 (2010)
CrossRef
Google Scholar
Liu, Y., Schmidt, B.: Long read alignment based on maximal exact match seeds. Bioinformatics 28, i318–i324 (2012)
CrossRef
Google Scholar
Langmead, B., Salzberg, S.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012)
CrossRef
Google Scholar