Skip to main content

Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment Backtracking for Short DNA Sequences

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8385)

Abstract

In this paper, we present a GPU-accelerated Smith-Waterman (SW) algorithm with Alignment Backtracking, called GSWAB, for short DNA sequences. This algorithm performs all-to-all pairwise alignments and retrieves optimal local alignments on CUDA-enabled GPUs. To facilitate fast alignment backtracking, we have investigated a tile-based SW implementation using the CUDA programming model. This tiled computing pattern enables us to more deeply explore the powerful compute capability of GPUs. We have evaluated the performance of GSWAB on a Kepler-based GeForce GTX Titan graphics card. The results show that GSWAB can achieve a performance of up to 56.8 GCUPS on large-scale datasets. Furthermore, our algorithm yields a speedup of up to 53.4 and 10.9 over MSA-CUDA (the first stage) and gpu-pairAlign on the same hardware configurations.

Keywords

  • Smith-Waterman
  • Sequence alignment
  • Alignment backtracking
  • CUDA
  • GPU

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-55195-6_23
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-55195-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Smith, T., Waterman, M.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    CrossRef  Google Scholar 

  2. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 707–708 (1982)

    CrossRef  Google Scholar 

  3. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Nat. Acad. Sci. USA 85, 2444–2448 (1988)

    CrossRef  Google Scholar 

  4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    CrossRef  Google Scholar 

  5. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence Weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22, 4673–4680 (1994)

    CrossRef  Google Scholar 

  6. Liu, Y., Schmidt, B., Maskell, D.L.: MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26, 1958–1964 (2010)

    CrossRef  Google Scholar 

  7. Liu, Y., Schmidt, B., Maskell, D.L.: CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28, 1830–1837 (2012)

    CrossRef  Google Scholar 

  8. Alachiotis, N., Berger, S.A., Stamatakis, A.: Coupling SIMD and SIMT architectures to boost performance of a phylogeny-aware alignment kernel. BMC Bioinform. 13, 196 (2012)

    CrossRef  Google Scholar 

  9. Liu, C.M., Wong, T., Wu, E., Luo, R., Yiu, S.M., Li, Y., Wang, B., Yu, C., Chu, X., Zhao, K., Li, R., Lam, T.W.: SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics 28, 878–879 (2011)

    CrossRef  Google Scholar 

  10. Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J.Y., Bae, S.H., Li, H., Zhang, B., Wu, T.L., Ruan, Y., Ekanayake, S., Hughes, A., Fox, G.: Hybrid cloud and cluster computing paradigms for life science applications. BMC Bioinform. 11, S3 (2010)

    CrossRef  Google Scholar 

  11. Liu, Y., Maskell, D.L., Schmidt, B.: CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units. BMC Res. Notes 2, 73 (2009)

    CrossRef  Google Scholar 

  12. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.L.: Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21, 3431–3432 (2005)

    CrossRef  Google Scholar 

  13. Oliver, T., Schmidt, B., Maskell, D.L.: Reconfigurable architectures for bio-sequence database scanning on FPGAs. IEEE Trans. Circuit Syst. II 52, 851–855 (2005)

    CrossRef  Google Scholar 

  14. Li, T.I., Shum, W., Truong, K.: 160-fold acceleration of the Smith-Waterman algorithm using a Field Programmable Gate Array (FPGA). BMC Bioinform. 8, I85 (2007)

    CrossRef  Google Scholar 

  15. Wozniak, A.: Using video-oriented instructions to speed up sequence comparison. Comput. Appl. Biosci. 13, 145–150 (1997)

    Google Scholar 

  16. Rognes, T., Seeberg, E.: Six-fold speedup of Smith-Waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 16, 699–706 (2000)

    CrossRef  Google Scholar 

  17. Farrar, M.: Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23, 156–161 (2007)

    CrossRef  Google Scholar 

  18. Alpern, B., Carter, L., Gatlin, K.S.: Microparallelism and high performance protein matching. In: Proceedings of the 1995 ACM/IEEE Supercomputing Conference (1995)

    Google Scholar 

  19. Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD parallelization. BMC Bioinform. 12, 221 (2011)

    CrossRef  Google Scholar 

  20. Wirawan, A., Kwoh, C.K., Hieu, N.T., Schmidt, B.: CBESW: sequence alignment on Playstation 3. BMC Bioinform. 9, 377 (2008)

    CrossRef  Google Scholar 

  21. Szalkowski, A., Ledergerber, C., Krahenbuhl, P., Dessimoz, C.: SWPS3 fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Res. Notes 1, 107 (2008)

    CrossRef  Google Scholar 

  22. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Streaming algorithms for biological sequence alignment on GPUs. IEEE Trans. Parallel Distrib. Syst. 18, 1270–1281 (2007)

    CrossRef  Google Scholar 

  23. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinform. 9, S10 (2008)

    CrossRef  Google Scholar 

  24. Ligowski, L., Rudnicki, W.: An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases. In: 2009 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8 (2009)

    Google Scholar 

  25. Liu, Y., Schmidt, B., Maskel, D.L.: CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Res. Notes 3, 93 (2010)

    CrossRef  Google Scholar 

  26. Khajeh-Saeed, A., Poole, S., Perot, J.: Acceleration of the Smith Waterman algorithm using single and multiple graphics processors. J. Comput. Phys. 229, 4247–4258 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Blazewicz, J., Frohmberg, W., Kierzynka, M., Pesch, E., Wojciechowski, P.: Protein alignment algorithms with an efficient backtracking routine on multiple GPUs. BMC Bioinform. 12, 181 (2011)

    CrossRef  Google Scholar 

  28. Hains, D., Cashero, Z., Ottenberg, M., Bohm, W., Rajopadhye, S.: Improving CUDASW++, a parallelization of Smith-Waterman for CUDA enabled devices. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 490–501 (2011)

    Google Scholar 

  29. de Oliveira Sandes, E.F., de Melo, A.C.M.: Retrieving Smith-Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans. Parallel Distrib. Syst. 24(5), 1009–1021 (2013)

    CrossRef  Google Scholar 

  30. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14, 117 (2013)

    CrossRef  Google Scholar 

  31. Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: multiple sequence alignment on graphics processing units with CUDA. In: 20th IEEE International Conference on Application-Specific Systems, Architectures and Processors (2009)

    Google Scholar 

  32. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17 (1988)

    Google Scholar 

  33. Darling, A., Carey, L., Feng, W.: The design, implementation, and evaluation of mpiBLAST. In: 4th International Conference on Linux Clusters: The HPC Revolution 2003 in Conjunction with ClusterWorld Conference and Expo (2003)

    Google Scholar 

  34. Oehmen, C.S., Baxter, J.: ScalaBLAST 2.0: rapid and robust BLAST calculations on multiprocessor systems. Bioinformatics 29, 797–798 (2013)

    CrossRef  Google Scholar 

  35. Wu, C., Kalyanaraman, A., Cannon, W.R.: pGraph: efficient parallel construction of large-scale protein sequence homology graphs. IEEE Trans. Parallel Distrib. Syst. 23, 1923–1933 (2012)

    CrossRef  Google Scholar 

  36. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. PNAS 89, 10915–10919 (1992)

    CrossRef  Google Scholar 

  37. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–358. National Biomedical Research Foundation, Washington DC (1978)

    Google Scholar 

  38. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified graphics and computing architecture. IEEE Micro 28, 3955 (2008)

    CrossRef  Google Scholar 

  39. NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi. NVIDIA Corporation Whitepaper (2009)

    Google Scholar 

  40. NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Kepler GK110. NVIDIA Corporation Whitepaper (2012)

    Google Scholar 

  41. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup: the sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    CrossRef  Google Scholar 

  42. Liu, Y., Schmidt, B., Maskell, D.L.: Parallel reconstruction of neighbor-joining trees for large multiple sequence alignments using CUDA. In: IEEE International Symposium on Parallel and Distributed Processing (2009)

    Google Scholar 

  43. Rizk, G., Lavenier, D.: GASSST: global alignment short sequence search tool. Bioinformatics 26, 2534–2540 (2010)

    CrossRef  Google Scholar 

  44. Liu, Y., Schmidt, B.: Long read alignment based on maximal exact match seeds. Bioinformatics 28, i318–i324 (2012)

    CrossRef  Google Scholar 

  45. Langmead, B., Salzberg, S.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Schmidt, B. (2014). Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment Backtracking for Short DNA Sequences. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)