Skip to main content

Inflammatory Processes in the Dental Pulp

  • Chapter
  • First Online:
The Dental Pulp

Abstract

Inflammatory processes associated with the innate and adaptive immune defense systems occur in the dental pulp following carious and other injury. However, the specialized environment of the pulp, in terms of its relatively noncompliant nature and the bathing of the tooth surface with oral secretions containing bacteria, poses significant challenges to maintain tissue integrity and vitality. The molecular and cellular responses taking place post-injury are multifaceted. The sequestration of growth factors and other bioactive molecules in a fossilized state within the dentin matrix and their release during carious dissolution further contributes to the complexity of signaling in the diseased pulp. It is also clear that considerable cross talk between inflammatory and regenerative cellular signaling processes occurs. An understanding of this cross talk is pivotal to our understanding of post-injury tissue events and the development of future clinical strategies for improved management of the diseased pulp and stimulation of its healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siqueira JF. Pulpal infections including caries. In: Hargreaves KM, Goodis HE, Tay FR, editors. Seltzer & Bender’s dental pulp. 2nd ed. Chicago: Quintessence Books; 2012. p. 205–39.

    Google Scholar 

  2. Smith AJ, Scheven BA, Takahashi Y, Ferracane J, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57:109–21.

    PubMed  Google Scholar 

  3. Petersson A, Axelsson S, Davidson T, Frisk F, Hakeberg M, Kvist T, et al. Radiological diagnosis of periapical bone tissue lesions in endodontics: a systematic review. Int Endod J. 2012;45:783–801.

    PubMed  Google Scholar 

  4. Mejàre IA, Axelsson S, Davidson T, Frisk F, Hakeberg M, Kvist T, et al. Diagnosis of the condition of the dental pulp: a systematic review. Int Endod J. 2012;45:597–613.

    PubMed  Google Scholar 

  5. Trope M. Regenerative potential of dental pulp. J Endod. 2008;34(Suppl):S13–7.

    PubMed  Google Scholar 

  6. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. Pediatr Dent. 2013;35:129–40.

    PubMed  Google Scholar 

  7. Law AS. Considerations for regeneration procedures. J Endod. 2013;39(Suppl):S44–56.

    PubMed  Google Scholar 

  8. Mao JJ, Kim SG, Zhou J, Ye L, Cho S, Suzuki T, et al. Regenerative endodontics: barriers and strategies for clinical translation. Dent Clin North Am. 2012;56:639–49.

    PubMed Central  PubMed  Google Scholar 

  9. Smith AJ, Smith JG, Shelton RM, Cooper PR.Harnessing the natural regenerative potential of the dental pulp. Dent Clin North Am. 2012;56:589–601.

    PubMed  Google Scholar 

  10. Kinaia BM, Chogle SM, Kinaia AM, Goodis HE.Regenerative therapy: a periodontal-endodontic perspective. Dent Clin North Am. 2012;56:537–47.

    PubMed  Google Scholar 

  11. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: biological strategies for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:4–12.

    Google Scholar 

  12. Park ES, Cho HS, Kwon TG, Jang SN, Lee SH, An CH, et al. Proteomics analysis of human dentin reveals distinct protein expression profiles. J Proteome Res. 2009;8:1338–46.

    PubMed  Google Scholar 

  13. Jágr M, Eckhardt A, Pataridis S, Mikšík I. Comprehensive proteomic analysis of human dentin. Eur J Oral Sci. 2012;120:259–68.

    PubMed  Google Scholar 

  14. Smith JS, Smith AJ, Shelton RM, Cooper PR.Antibacterial activity of dentine and pulp extracellular matrix extracts. Int Endod J. 2012;45:749–55.

    PubMed  Google Scholar 

  15. Simon S, Smith AJ, Berdal A, Lumley PJ, Cooper PR. The MAPK pathway is involved in odontoblast stimulation via p38 phosphorylation. J Endod. 2010;3:256–9.

    Google Scholar 

  16. Veerayutthwilai O, Byers MR, Pham TT, Darveau RP, Dale BA. Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol. 2007;22:5–13.

    PubMed  Google Scholar 

  17. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 1999;18:7719–30.

    PubMed  Google Scholar 

  18. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    PubMed  Google Scholar 

  19. Hagemann C, Blank JL. The ups and downs of MEK kinase interactions. Cell Signal. 2001;13:863–75.

    PubMed  Google Scholar 

  20. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219:667–76.

    PubMed  Google Scholar 

  21. Leprince JG, Zeitlin BD, Tolar M, Peters OA.Interactions between immune system and mesenchymal stem cells in dental pulp and periapical tissues. Int Endod J. 2012;45:689–701.

    PubMed  Google Scholar 

  22. Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis. 2014;20:25–34.

    PubMed  Google Scholar 

  23. Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86:320–5.

    PubMed  Google Scholar 

  24. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    PubMed  Google Scholar 

  25. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007;109:1422–32.

    PubMed  Google Scholar 

  26. Chang J, Zhang C, Tani-Ishii N, Shi S, Wang CY. NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res. 2005;84:994–8.

    PubMed Central  PubMed  Google Scholar 

  27. Zampetaki A, Xiao Q, Zeng L, Hu Y, Xu Q. TLR4 expression in mouse embryonic stem cells and in stem cell-derived vascular cells is regulated by epigenetic modifications. Biochem Biophys Res Commun. 2006;347:89–99.

    PubMed  Google Scholar 

  28. Farges JC, Keller JF, Carrouel F, Durand SH, Romeas A, Bleicher F, et al. Odontoblasts in the dental pulp immune response. J Exper Zool B Mol Dev Evol. 2009;312B:425–36.

    Google Scholar 

  29. Hirao K, Yumoto H, Takahashi K, Mukai K, Nakanishi T, Matsuo T. Roles of TLR2, TLR4, NOD2, and NOD1 in pulp fibroblasts. J Dent Res. 2009;88:762–7.

    PubMed  Google Scholar 

  30. Horst OV, Tompkins KA, Coats SR, Braham PH, Darveau RP, Dale BA. TGF-β1 inhibits TLR-mediated odontoblast responses to oral bacteria. J Dent Res. 2009;88:333–8.

    PubMed Central  PubMed  Google Scholar 

  31. Botero TM, Son SJ, Vodopyanov D, Hasegawa M, Shelburne CE, Nor JE. MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res. 2010;89:264–9.

    PubMed  Google Scholar 

  32. Creagh EM, O’Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27:352–7.

    PubMed  Google Scholar 

  33. Yu CY, Boyd NM, Cringle SJ, Su EN, Alder VA, Yu DY. Agonist-induced vasoactive responses in isolated perfused porcine dental pulpal arterioles. Arch Oral Biol. 2002;47:99–107.

    PubMed  Google Scholar 

  34. Yu CY, Boyd NM, Cringle SJ, Su EN, Alder VA, Yu DY. An in vivo and in vitro comparison of the effects of vasoactive mediators on pulpal blood vessels in rat incisors. Arch Oral Biol. 2002;47:723–32.

    PubMed  Google Scholar 

  35. Edwall L, Olgart L, Haegerstam G. Influence of vasodilator substances on pulpal blood flow in the cat. Acta Odontol Scand. 1973;31:289–96.

    PubMed  Google Scholar 

  36. Kim S, Dorscher-Kim J. Hemodynamic regulation of the dental pulp in a low compliance environment. J Endod. 1989;15:404–8.

    PubMed  Google Scholar 

  37. Neuhaus SJ, Byers MR. Endothelin receptors and endothelin-1 in developing rat teeth. Arch Oral Biol. 2007;52:655–62.

    PubMed  Google Scholar 

  38. Yu CY, Boyd NM, Cringle SJ, Su EN, Yu DY. Vasoactive response of isolated pulpal arterioles to endothelin-1. J Endod. 2004;30:149–53.

    PubMed  Google Scholar 

  39. Caviedes-Bucheli J, Munoz HR, Azuero-Holguin MM, Ulate E. Neuropeptides in dental pulp. J Endod. 2008;4:773–88.

    Google Scholar 

  40. Killough SA, Lundy FT, Irwin CR. Substance P expression by human dental pulp fibroblasts: a potential role in neurogenic inflammation. J Endod. 2009;35:73–7.

    PubMed  Google Scholar 

  41. Killough SA, Lundy FT, Irwin CR. Dental pulp fibroblasts express neuropeptide Y Y1 receptor but not neuropeptide Y. Int Endod J. 2010;43:835–42.

    PubMed  Google Scholar 

  42. Bowler KE, Worsley MA, Broad L, Sher E, Benschop R, Johnson K, et al. Evidence for anti-inflammatory and putative analgesic effects of a monoclonal antibody to calcitonin gene-related peptide. Neuroscience. 2013;228:271–82.

    PubMed  Google Scholar 

  43. Hirafuji M, Terashima K, Satoh S, Ogura Y. Stimulation of prostaglandin E2 biosynthesis in rat dental pulp explants in vitro by 5-hysroxytryptamine. Arch Oral Biol. 1982;27:961–4.

    PubMed  Google Scholar 

  44. Hirafuji M, Ogura Y. 5-hydroxytryptamine stimulates the release of prostacyclin but not thromboxane A2 from isolated rat dental pulp. Eur J Pharmacol. 1987;136:433–6.

    PubMed  Google Scholar 

  45. Liu M, Kim S, Park DS, Markowitz K, Bilotto G, Dorscher-Kim J. Comparison of the effects of intra-arterial and locally applied vasoactive agents on pulpal blood flow in dog canine teeth determined by laser Doppler velocimetry. Arch Oral Biol. 1990;35:405–10.

    PubMed  Google Scholar 

  46. Okiji T, Morita I, Kobayashi C, Sunada I, Murota S. Arachidonic-acid metabolism in normal and experimentally-inflamed rat dental pulp. Arch Oral Biol. 1987;32:723–7.

    PubMed  Google Scholar 

  47. Miyauchi M, Takata T, Ito H, Ogawa I, Kobayashi J, Nikai H, et al. Immunohistochemical demonstration of prostaglandins E2, F2 alpha, and 6-keto-prostaglandin F1 alpha in rat dental pulp with experimentally induced inflammation. J Endod. 1996;22:600–2.

    PubMed  Google Scholar 

  48. Okiji T, Morita I, Sunada I, Murota S. Involvement of arachidonic acid metabolites in increases in vascular permeability in experimental dental pulpal inflammation in the rat. Arch Oral Biol. 1989;34:523–8.

    PubMed  Google Scholar 

  49. Park C, Lee SY, Kim HJ, Park K, Kim JS, Lee SJ. Synergy of TLR2 and H1R on Cox-2 Activation in Pulpal Cells. J Dent Res. 2010;89:180–5.

    PubMed  Google Scholar 

  50. Speer ML, Madonia JV, Heuer MA. Quantitative evaluation of the immunocompetence of the dental pulp. J Endod. 1977;3:418–23.

    PubMed  Google Scholar 

  51. Pulver WH, Taubman MA, Smith DJ. Immune components in normal and inflamed human dental pulp. Arch Oral Biol. 1977;22:103–11.

    PubMed  Google Scholar 

  52. Peković DD, Fillery ED. Identification of bacteria in immunopathologic mechanisms of human dental pulp. Oral Surg Oral Med Oral Pathol. 1984;57:652–61.

    PubMed  Google Scholar 

  53. Okamura K, Maeda M, Nishikawa T, Tsutsui M. Dentinal response against carious invasion: localization of antibodies in odontoblastic body and process. J Dent Res. 1980;59:1368–73.

    PubMed  Google Scholar 

  54. Pekovic DD, Adamkiewicz VW, Shapiro A, Gornitsky M. Identification of bacteria in association with immune components in human carious dentin. J Oral Pathol. 1987;16:223–33.

    PubMed  Google Scholar 

  55. Cotran RS, Kumar V, Collins T, editors. Robbins pathologic basis of disease. 6th ed. Philadelphia: WB Saunders Company; 1998.

    Google Scholar 

  56. Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I. Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J Dent Res. 2013;92:532–9.

    PubMed  Google Scholar 

  57. Southam JC, Moody GH. The fibrinolytic activity of human and rat dental pulps. Arch Oral Biol. 1975;20:783–6.

    PubMed  Google Scholar 

  58. Huang FM, Tsai CH, Chen YJ, Liu CM, Chou MY, Chang YC. Upregulation of tissue-type plasminogen activator in inflamed human dental pulps. Int Endod J. 2005;38:328–33.

    PubMed  Google Scholar 

  59. Huang FM, Tsai CH, Chen YJ, Chou MY, Chang YC. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by interleukin-1alpha in human pulp cells. J Endod. 2006;32:30–3.

    PubMed  Google Scholar 

  60. Lucchini M, Couble ML, Romeas A, Staquet MJ, Bleicher F, Magloire H, et al. Alpha v beta 3 integrin expression in human odontoblasts and co-localization with osteoadherin. J Dent Res. 2004;83:552–6.

    PubMed  Google Scholar 

  61. Staquet MJ, Couble ML, Roméas A, Connolly M, Magloire H, Hynes RO, et al. Expression and localisation of alpha integrins in human odontoblasts. Cell Tissue Res. 2006;323:457–63.

    PubMed  Google Scholar 

  62. Bagis B, Atilla P, Cakar N, Hasanreisoglu U. Immunohistochemical evaluation of endothelial cell adhesion molecules in human dental pulp: effects of tooth preparation and adhesive application. Arch Oral Biol. 2007;52:705–11.

    PubMed  Google Scholar 

  63. Bagis B, Atilla P, Cakar N, Hasanreisoglu U. An immunohistochemical evaluation of cell adhesion molecules in human dental pulp after tooth preparation and application of temporary luting cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:137–44.

    PubMed  Google Scholar 

  64. Warfvinge J, Dahlén G, Bergenholtz G. Dental pulp response to bacterial cell wall material. J Dent Res. 1985;64:1046–50.

    PubMed  Google Scholar 

  65. Tani-Ishii N, Wang CY, Stashenko P. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol. 1995;10:213–9.

    PubMed  Google Scholar 

  66. Lara VS, Figueiredo F, da Silva TA, Cunha FQ. Dentin-induced in vivo inflammatory response and in vitro activation of murine macrophages. J Dent Res. 2003;82:460–5.

    PubMed  Google Scholar 

  67. Silva TA, Lara VS, Silva JS, Garlet GP, Butler WT, Cunha FQ. Dentin sialoprotein and phosphoprotein induce neutrophil recruitment: a mechanism dependent on IL-1beta, TNF-beta, and CXC chemokines. Calcif Tissue Int. 2004;74:532–41.

    PubMed  Google Scholar 

  68. Silva TA, Lara VS, Silva JS, Oliveira SH, Butler WT, Cunha FQ. Macrophages and mast cells control the neutrophil migration induced by dentin proteins. J Dent Res. 2005;84:79–83.

    PubMed  Google Scholar 

  69. Smith JG, Smith AJ, Shelton RM, Cooper PR. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res. 2012;318:2397–406.

    PubMed  Google Scholar 

  70. Levin LG, Rudd A, Bletsa A, Reisner H. Expression of IL-8 by cells of the odontoblast layer in vitro. Eur J Oral Sci. 1999;107:131–7.

    PubMed  Google Scholar 

  71. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent. 2010;38:687–97.

    PubMed  Google Scholar 

  72. Kupper TS, Horowitz M, Birchall N, Mizutani H, Coleman D, McGuire J, et al. Hematopoietic, lymphopoietic, and pro-inflammatory cytokines produced by human and murine keratinocytes. Ann N Y Acad Sci. 1998;548:262–70.

    Google Scholar 

  73. Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990;4:2860–7.

    PubMed  Google Scholar 

  74. Taub DD, Oppenheim JJ. Chemokines, inflammation and the immune system. Ther Immunol. 1994;1:229–46.

    PubMed  Google Scholar 

  75. Hosoya S, Matsushima K, Ohbayashi E, Yamazaki M, Shibata Y, Abiko Y. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide. Biochem Mol Med. 1996;59:138–43.

    PubMed  Google Scholar 

  76. Matsuo T, Ebisu S, Nakanishi T, Yonemura K, Harada Y, Okada H. Interleukin-1 alpha and interleukin-1 beta periapical exudates of infected root canals: correlations with the clinical findings of the involved teeth. J Endod. 1994;20:432–5.

    PubMed  Google Scholar 

  77. Pezelj-Ribaric S, Anic I, Brekalo I, Miletic I, Hasan M, Simunovic-Soskic M. Detection of tumor necrosis factor alpha in normal and inflamed human dental pulps. Arch Med Res. 2002;33:482–4.

    PubMed  Google Scholar 

  78. McLachlan JL, Sloan AJ, Smith AJ, Landini G, Cooper PR. S100 and cytokine expression in caries. Infect Immun. 2004;72:4102–8.

    PubMed Central  PubMed  Google Scholar 

  79. de Brito LC, Teles FR, Teles RP, Totola AH, Vieira LQ, Sobrinho AP. T-lymphocyte and cytokine expression in human inflammatory periapical lesions. J Endod. 2012;38:481–5.

    PubMed  Google Scholar 

  80. Dinarello CA. Interleukin-1. Rev Infect Dis. 1984;6:51–95.

    PubMed  Google Scholar 

  81. Smith KA, Lachman LB, Oppenheim JJ, Favata MF. The functional relationship of the interleukins. J Exp Med. 1980;151:1551–6.

    PubMed  Google Scholar 

  82. Guo X, Niu Z, Xiao M, Yue L, Lu H. Detection of interleukin-8 in exudates from normal and inflamed human dental pulp tissues. Chin J Dent Res. 2000;3:63–6.

    PubMed  Google Scholar 

  83. Graham LW, Smith AJ, Sloan AJ, Cooper PR. Cytokine release from human dentine. J Dent Res 2007;86(Spec Iss B):abstract number 0222 (BSDR). www.dentalresearch.org.

  84. Hahn CL, Best AM, Tew JG. Cytokine induced by Streptococcus mutans and pulpal pathogenesis. Infect Immun. 2000;68:6785–9.

    PubMed Central  PubMed  Google Scholar 

  85. Barkhordar RA, Hayashi C, Hussain MZ. Detection of interleukin-6 in human pulp and periapical lesions. Endod Dent Traumatol. 1999;15:26–7.

    PubMed  Google Scholar 

  86. Brennan EP, Tang XH, Stewart-Akers AM, Gudas LJ, Badylak SF. Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells. J Tissue Eng Regen Med. 2008;2:491–8.

    PubMed Central  PubMed  Google Scholar 

  87. Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, Bedelbaeva K, McIntosh D, Dewilde A, Braunhut SJ, Badylak SF. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A. 2009;15:605–14.

    PubMed  Google Scholar 

  88. Izumi T, Kobayashi I, Okamura K, Sakai H. Immunohistochemical study on the immunocompetent cells of the pulp in human non-carious and carious teeth. Arch Oral Biol. 1995;40:609–14.

    PubMed  Google Scholar 

  89. Hahn CL, Falkler Jr WA, Siegel MA. A study of T and B cells in pulpal pathosis. J Endod. 1989;15:20–6.

    PubMed  Google Scholar 

  90. Maghazachi AA. Compartmentalization of human natural killer cells. Mol Immunol. 2005;42:523–9.

    PubMed  Google Scholar 

  91. Kikuchi T, Hahn CL, Tanaka S, Barbour SE, Schenkein HA, Tew JG. Dendritic cells stimulated with Actinobacillus actinomycetemcomitans elicit rapid gamma interferon responses by natural killer cells. Infect Immun. 2004;72:5089–96.

    PubMed Central  PubMed  Google Scholar 

  92. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76.

    PubMed  Google Scholar 

  93. Jontell M, Gunraj MN, Bergenholtz G.Immunocompetent cells in the normal dental pulp. J Dent Res. 1987;66:1149–53.

    PubMed  Google Scholar 

  94. Sakurai K, Okiji T, Suda H. Co-increase of nerve fibers and HLA-DR- and/or factor-XIIIa-expressing dendritic cells in dentinal caries-affected regions of the human dental pulp: an immunohistochemical study. J Dent Res. 1999;78:1596–608.

    PubMed  Google Scholar 

  95. Maderna P, Godson C. Lipoxins: resolutionary road. Br J Pharmacol. 2009;158:947–59.

    PubMed Central  PubMed  Google Scholar 

  96. Serhan CN. Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost. 2009;7 suppl 1:44–8.

    PubMed  Google Scholar 

  97. Dondoni L, Scarparo RK, Kantarci A, Van Dyke TE, Figueiredo JA, Batista EL Jr. Effect of the pro-resolution lipid mediator Resolvin E1 (RvE1) on pulp tissues exposed to the oral environment. Int Endod J. 2013 Dec 2. doi: 10.1111/iej.12224. [Epub ahead of print].

  98. Dalli J, Zhu M, Vlasenko NA, Deng B, Haeggström JZ, Petasis NA, Serhan CN. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J. 2013;27:2573–83.

    PubMed Central  PubMed  Google Scholar 

  99. Bergenholtz G. Inflammatory response of the dental pulp to bacterial irritation. J Endod. 1981;7:100–4.

    PubMed  Google Scholar 

  100. Rutherford RB, Gu K. Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci. 2000;108:202–6.

    PubMed  Google Scholar 

  101. Baumgardner KR, Sulfaro MA. The anti-inflammatory effects of human recombinant copper-zinc superoxide dismutase on pulp inflammation. J Endod. 2001;27:190–5.

    PubMed  Google Scholar 

  102. Smith AJ, Patel M, Graham L, Sloan AJ, Cooper PR.Dentine regeneration: key roles for stem cells and molecular signalling. Oral Biosci Med. 2005;2:127–32.

    Google Scholar 

  103. He WX, Niu ZY, Zhao SL, Smith AJ. Smad protein mediated transforming growth factor beta1 induction of apoptosis in the MDPC-23 odontoblast-like cell line. Arch Oral Biol. 2005;50:929–36.

    PubMed  Google Scholar 

  104. Goldberg M, Farges JC, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, et al. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res. 2008;58:137–47.

    PubMed Central  PubMed  Google Scholar 

  105. Kjeldsen M, Holmstrup P, Bendtzen K. Marginal periodontitis and cytokines: a review of the literature. J Periodontol. 1993;64:1013–22.

    PubMed  Google Scholar 

  106. Paula-Silva FW, Ghosh A, Silva LA, Kapila YL.TNF-alpha promotes an odontoblastic phenotype in dental pulp cells. J Dent Res. 2009;88:339–44.

    PubMed Central  PubMed  Google Scholar 

  107. Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau 3rd T, Marcucio RS. Action of IL-1beta during fracture healing. J Orthop Res. 2010;28:778–84.

    PubMed Central  PubMed  Google Scholar 

  108. Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol. 2006;22:39–46.

    PubMed  Google Scholar 

  109. Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev. 2000;177:175–84.

    PubMed  Google Scholar 

  110. Miller RJ, Banisadr G, Bhattacharyya BJ. CXCR4 signaling in the regulation of stem cell migration and development. J Neuroimmunol. 2008;198:31–8.

    PubMed  Google Scholar 

  111. Jiang HW, Ling JQ, Gong QM. The expression of stromal cell-derived factor 1 (SDF-1) in inflamed human dental pulp. J Endod. 2008;34:1351–4.

    PubMed  Google Scholar 

  112. Jiang L, Zhu YQ, Du R, Gu YX, Xia L, Qin F, et al. The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod. 2008;34:939–44.

    PubMed Central  PubMed  Google Scholar 

  113. About I, Mitsiadis TA. Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res. 2001;15:59–62.

    PubMed  Google Scholar 

  114. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.

    PubMed  Google Scholar 

  115. Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, et al. Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells. 2014;32:1553–63.

    PubMed  Google Scholar 

  116. Zhang J, Zhang Y, Lv H, Yu Q, Zhou Z, Zhu Q, et al. Human stem cells from the apical papilla response to bacterial lipopolysaccharide exposure and anti-inflammatory effects of nuclear factor I C. J Endod. 2013;39:1416–22.

    PubMed  Google Scholar 

  117. Kardos TB, Hunter AR, Hanlin SM, Kirk EE.Odontoblast differentiation: a response to environmental calcium? Endod Dent Traumatol. 1998;14:105–11.

    PubMed  Google Scholar 

  118. Schröder U, Granath LE. Early reaction of intact human teeth to calcium hydroxide following experimental pulpotomy and its significance to the development of hard tissue barrier. Odontol Revy. 1971;22:379–95.

    PubMed  Google Scholar 

  119. Stanley H. Calcium hydroxide and vital pulp therapy. In: Hargreaves KM, Goodis HE, editors. Seltzer and Bender’s dental pulp. 1st ed. Chicago: Quintessence Books; 2002. p. 309–24.

    Google Scholar 

  120. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix. Biomaterials. 2006;27:2865–73.

    PubMed  Google Scholar 

  121. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35:636–42.

    PubMed  Google Scholar 

  122. Brentano F, Schorr O, Gay RE, Gay S, Kyburz D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum. 2005;52:2656–65.

    PubMed  Google Scholar 

  123. Luheshi NM, McColl BW, Brough D. Nuclear retention of IL-1alpha by necrotic cells: a mechanism to dampen sterile inflammation. Eur J Immunol. 2009;39:2973–80.

    PubMed Central  PubMed  Google Scholar 

  124. Acosta-Pérez G, Maximina Bertha Moreno-Altamirano M, Rodríguez-Luna G, Javier Sánchez-Garcia F. Differential dependence of the ingestion of necrotic cells and TNF-alpha/ IL-1beta production by murine macrophages on lipid rafts. Scand J Immunol. 2008;68:423–9.

    PubMed  Google Scholar 

  125. Magalhães-Santos IF, Andrade SG. Participation of cytokines in the necrotic-inflammatory lesions in the heart and skeletal muscles of Calomys callosus infected with Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2005;100:555–61.

    PubMed  Google Scholar 

  126. Huang TH, Yang CC, Ding SJ, Yeng M, Kao CT, Chou MY. Inflammatory cytokines reaction elicited by root-end filling materials. J Biomed Mater Res B Appl Biomater. 2005;73:123–8.

    PubMed  Google Scholar 

  127. Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials. 1999;20:167–73.

    PubMed  Google Scholar 

  128. Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998;24:543–7.

    PubMed  Google Scholar 

  129. McLachlan JL, Smith AJ, Bujalska IJ, Cooper PR. Gene expression profiling of pulpal tissue reveals the molecular complexity of dental caries. Biochim Biophys Acta. 2005;1741:271–81.

    PubMed  Google Scholar 

  130. Zudaire E, Portal-Núñez S, Cuttitta F. The central role of adrenomedullin in host defense. J Leukoc Biol. 2006;80:237–44.

    PubMed  Google Scholar 

  131. Montuenga LM, Martínez A, Miller MJ, Unsworth EJ, Cuttitta F. Expression of adrenomedullin and its receptor during embryogenesis suggests autocrine or paracrine modes of action. Endocrinology. 1997;138:440–51.

    PubMed  Google Scholar 

  132. Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y, et al. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun. 2005;332:297–303.

    PubMed  Google Scholar 

  133. Cornish J, Callon KE, Coy DH, Jiang NY, Xiao L, Cooper GJ, et al. Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo. Am J Physiol. 1997;273(6 Pt 1):E1113–20.

    PubMed  Google Scholar 

  134. Musson DS, McLachlan JL, Sloan AJ, Smith AJ, Cooper PR. Adrenomedullin is expressed during rodent dental tissue development and promotes cell growth and mineralisation. Biol Cell. 2010;102:145–57.

    PubMed  Google Scholar 

  135. Delgado M, Ganea D. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun. 2008;22:1146–51.

    PubMed Central  PubMed  Google Scholar 

  136. Fristad I, Bletsa A, Byers M. Inflammatory nerve responses in the dental pulp. Endod Topics. 2010;17:12–41.

    Google Scholar 

  137. Haug SR, Heyeraas KJ. Modulation of dental inflammation by the sympathetic nervous system. J Dent Res. 2006;85:488–95.

    PubMed  Google Scholar 

  138. Staquet MJ, Durand SH, Colomb E, Roméas A, Vincent C, Bleicher F, et al. Different roles of odontoblasts and fibroblasts in immunity. J Dent Res. 2008;87:256–61.

    PubMed  Google Scholar 

  139. Yamada M, Kojima N, Paranjpe A, Att W, Aita H, Jewett A, et al. N-acetyl cysteine (NAC)-assisted detoxification of PMMA resin. J Dent Res. 2008;87:372–7.

    PubMed  Google Scholar 

  140. Liu H, Kemeny DM, Heng BC, Ouyang HW, Melendez AJ, Cao T. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol. 2006;176:2864–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Cooper PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, P.R., Smith, A.J. (2014). Inflammatory Processes in the Dental Pulp. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics