Dry Mouth pp 81-101 | Cite as

Xerostomia and the Oral Microflora

  • Antoon J. M. Ligtenberg
  • Annica Almståhl


Xerostomia is the feeling of a dry mouth usually caused by hyposalivation. It may occur after radiation therapy of the head and neck, in systemic diseases such as Sjögren’s syndrome, or as a side effect of medication. Hyposalivation changes the oral microbiome with the most dramatic changes after radiation therapy. The number of lactobacilli and Candida albicans increases. Also the number of mutans streptococci increases in hyposalivated subjects, but sugar consumption is a stronger determinant for the level of mutans streptococci. Hyposalivated subjects are more susceptible to oral infections such as caries and mucosal infections. This is both caused by changes in the oral microflora and weakening of salivary protection mechanisms such as cleansing by the salivary flow and buffering capacity.

In the case of ventilated patients at intensive care units, hyposalivation leads to accumulation of dental plaque and a shift in microflora, which may cause lung infections. Oral hygiene in combination with oral antiseptics reduces the risk for lung infections in these patients.

Therapies for xerostomia consist of artificial saliva, gels, or spray. These products may contain polymers that form a microbial substrate. Application of salivary antimicrobial substances like lysozyme, lactoferrin, or lactoperoxidase in these products did not lead to lower microbial counts in vivo.

In conclusion, hyposalivation leads to changes in the oral microflora. In combination with a lower defense, this leads to a higher susceptibility to oral infections such as caries and mucosal infections. There is a need for products normalizing the oral microflora and thereby decreasing the risk of oral diseases in subjects with hyposalivation.


Oral Health Radiation Therapy Group Dental Plaque Mutans Streptococcus Artificial Saliva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tschoppe P, Wolgin ABM, Pischon N, Kielbassa AM. Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int. 2010;41:321–33.PubMedGoogle Scholar
  2. 2.
    Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8:3–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci. 2011;3:49–54.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wickström C, Herzberg MC, Beighton D, Svensater G. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology. 2009;155:2866–72.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    van der Hoeven JS, van den Kieboom CWA, Camp PJM. Utilization of mucin by oral Streptococcus species. Antonie Van Leeuwenhoek. 1990;57:165–72.Google Scholar
  10. 10.
    Biyikoglu B, Ricker A, Diaz PI. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development. Anaerobe. 2012;18:459–70.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rudiger SG, Dahlen G, Carlen A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination. Acta Odontol Scand. 2012;70:615–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbons RJ. Role of adhesion in microbial colonization of host tissues: a contribution of oral microbiology. J Dent Res. 1996;75:866–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socransky SS, Oppenheim FG. Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol. 2004;97:1311–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Kolenbrander PE, Palmer Jr RJ, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000. 2006;42:47–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90:1271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Davison G, Allgrove J, Gleeson M. Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise. Eur J Appl Physiol. 2009;106:277–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown LR, Dreizen S, Handler S, Johnston DA. Effect of radiation-induced xerostomia on human oral microflora. J Dent Res. 1975;54:740–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Llory H, Dammron A, Gioanni M, Frank RM. Some population changes in oral anaerobic microorganisms, Streptococcus mutans and yeasts following irradiation of the salivary glands. Caries Res. 1972;6:298–311.PubMedCrossRefGoogle Scholar
  19. 19.
    AlmståhI A, Wikström M, Stenberg I, Jakobsson A, Fagerberg-Mohlin B. Oral microbiota associated with hyposalivation of different origins. Oral Microbiol Immunol. 2003;18:1–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Grotz KA, Genitsariotis S, Vehling D, Al-Nawas B. Long-term oral Candida colonization, mucositis and salivary function after head and neck radiotherapy. Support Care Cancer. 2003;11:717–21.Google Scholar
  21. 21.
    Al-Nawas B, Grotz KA. Prospective study of the long term change of the oral flora after radiation therapy. Support Care Cancer. 2006;14:291–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Almståhl A, Wikström M, Fagerberg-Mohlin B. Microflora in oral ecosystems in subjects with radiation-induced hyposalivation. Oral Dis. 2008;14:541–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hu YJ, Shao ZY, Wang Q, Jiang YT, Ma R, Tang ZS, Liu Z, Liang JP, Huang ZW. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing. PLoS One. 2013;8:e56343.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lundström IM, Lindström FD. Subjective and clinical oral symptoms in patients with primary Sjögren’s syndrome. Clin Exp Rheumatol. 1995;13:725–31.Google Scholar
  25. 25.
    Kolavic SA, Gibson G, Al-Hashimi I, Guo IY. The level of cariogenic micro-organisms in patients with Sjögren’s syndrome. Spec Care Dentist. 1997;17:65–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Leung WK, Jin LJ, Yam WC, Samaranayake LP. Oral colonization of aerobic and facultatively anaerobic gram-negative rods and cocci in irradiated, dentate, xerostomic individuals. Oral Microbiol Immunol. 2001;16:1–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Almståhl A, Wikström M, Kroneld U. Microflora in oral ecosystems in primary Sjögren’s syndrome. J Rheumatol. 2001;28:1007–13.PubMedGoogle Scholar
  28. 28.
    Almståhl A, Kroneld U, Tarkowski A, Wikström M. Oral microbial flora in Sjögren’s syndrome. J Rheumatol. 1999;26:110–4.PubMedGoogle Scholar
  29. 29.
    Leung KC, Leung WK, McMillan AS. Supra-gingival microbiota in Sjögren’s syndrome. Clin Oral Investig. 2007;11:415–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Almståhl A, Wikström M. Microflora in oral ecosystems in subjects with hyposalivation due to medicines or of unknown origin. Oral Health Prev Dent. 2005;3:67–76.PubMedGoogle Scholar
  31. 31.
    Almståhl A, Wikström M. Oral microflora in subjects with reduced salivary secretion. J Dent Res. 1999;78:1410–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Eliasson L, Almståhl A, Lingstrom P, Wikström M, Carlen A. Minor gland saliva flow rate and proteins in subjects with hyposalivation due to Sjögren’s syndrome and radiation therapy. Arch Oral Biol. 2005;50:293–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Almståhl A, Kareem KL, Carlen A, Wardh I, Lingstrom P, Wikström M. A prospective study on oral microbial flora and related variables in dentate dependent elderly residents. Gerodontology. 2012;29:e1011–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Bergmans DC, Bonten MJ, Gaillard CA, Paling JC, van der Geest S, van Tiel FH, Beysens AJ, de Leeuw PW, Stobberingh EE. Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2001;164:382–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Scannapieco FA. Pneumonia in nonambulatory patients. The role of oral bacteria and oral hygiene. J Am Dent Assoc. 2006;137(Suppl):21S–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Scannapieco FA, Bush RB, Paju S. Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease. A systematic review. Ann Periodontol. 2003;8:54–69.PubMedCrossRefGoogle Scholar
  37. 37.
    Scannapieco FA, Rethman MP. The relationship between periodontal diseases and respiratory diseases. Dent Today. 2003;22:79–83.PubMedGoogle Scholar
  38. 38.
    Labeau SO, Van de Vyver K, Brusselaers N, Vogelaers D, Blot SI. Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancet Infect Dis. 2011;11:845–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Labeau SO, Blot SI. Toothbrushing for preventing ventilator-associated pneumonia. Crit Care. 2013;17:417.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149:279–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Marsh PD. Dental diseases–are these examples of ecological catastrophes? Int J Dent Hyg. 2006;4 Suppl 1:3–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Guggenheimer J, Moore PA. Xerostomia: etiology, recognition and treatment. J Am Dent Assoc. 2003;134:61–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Petersson GH, Twetman S, Bratthall D. Evaluation of a computer program for caries risk assessment in schoolchildren. Caries Res. 2002;36:327–40.CrossRefGoogle Scholar
  44. 44.
    Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21:297–309.PubMedCrossRefGoogle Scholar
  45. 45.
    Pramanik R, Osailan SM, Challacombe SJ, Urquhart D, Proctor GB. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur J Oral Sci. 2010;118:245–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Edgar WM, Higham SM, Manning RH. Saliva stimulation and caries prevention. Adv Dent Res. 1994;8:239–45.PubMedGoogle Scholar
  47. 47.
    Almståhl A, Wikström M. Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol. 2003;48:337–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Lingstrom P, Birkhed D. Plaque pH and oral retention after consumption of starchy snack products at normal and low salivary secretion rate. Acta Odontol Scand. 1993;51:379–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Johansson AK, Lingstrom P, Birkhed D. Effect of soft drinks on proximal plaque pH at normal and low salivary secretion rates. Acta Odontol Scand. 2007;65:352–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Watanabe S, Dawes C. The effects of different foods and concentrations of citric-acid on the flow-rate of whole saliva in man. Arch Oral Biol. 1988;33:1–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Rudney JD, Ji Z, Larson CJ. The prediction of saliva swallowing frequency in humans from estimates of salivary flow rate and the volume of saliva swallowed. Arch Oral Biol. 1995;40:507–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Ruxton CH, Gardner EJ, McNulty HM. Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit Rev Food Sci Nutr. 2010;50:1–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Tong HC, Gao XJ, Dong XZ. Non-mutans streptococci in patients receiving radiotherapy in the head and neck area. Caries Res. 2003;37:261–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Brunstrom JM. Effects of mouth dryness on drinking behavior and beverage acceptability. Physiol Behav. 2002;76:423–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Soto-Rojas AE, Kraus A. The oral side of Sjögren syndrome. Diagnosis and treatment. A review. Arch Med Res. 2002;33:95–106.PubMedCrossRefGoogle Scholar
  57. 57.
    Hede B, Petersen PE. Self-assessment of dental health among Danish noninstitutionalized psychiatric patients. Spec Care Dentist. 1992;12:33–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Brand HS, Dun SN, Nieuw Amerongen AV. Ecstasy (MDMA) and oral health. Br Dent J. 2008;204:77–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90:294–303.PubMedCrossRefGoogle Scholar
  60. 60.
    Granath L, Cleaton-Jones P, Fatti LP, Grossman ES. Salivary lactobacilli explain dental caries better than salivary mutans streptococci in 4–5-year-old children. Scand J Dent Res. 1994;102:319–23.PubMedGoogle Scholar
  61. 61.
    Zickert I, Emilson CG, Krasse B. Streptococcus mutans, lactobacilli and dental health in 13–14-year-old Swedish children. Community Dent Oral Epidemiol. 1982;10:77–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Kohler B, Bjarnason S. Mutans streptococci, lactobacilli and caries prevalence in 11- and 12-year-old Icelandic children. Community Dent Oral Epidemiol. 1987;15:332–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Shi S, Zhao Y, Hayashi Y, Yakushiji M, Machida Y. A study of the relationship between caries activity and the status of dental caries: application of the Dentocult LB method. Chin J Dent Res. 1999;2:34–7.PubMedGoogle Scholar
  64. 64.
    Eliasson L, Carlen A, Almståhl A, Wikström M, Lingstrom P. Dental plaque pH and micro-organisms during hyposalivation. J Dent Res. 2006;85:334–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Almståhl A, Carlen A, Eliasson L, Lingstrom P. Lactobacillus species in supragingival plaque in subjects with hyposalivation. Arch Oral Biol. 2010;55:255–9.Google Scholar
  66. 66.
    Stamatova I, Meurman JH. Probiotics: health benefits in the mouth. Am J Dent. 2009;22:329–38.PubMedGoogle Scholar
  67. 67.
    Twetman S. Are we ready for caries prevention through bacteriotherapy? Braz Oral Res. 2012;26 Suppl 1:64–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Bernardeau M, Vernoux JP. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin Microbiol Infect. 2013;19:321–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Petersson LG, Magnusson K, Hakestam U, Baigi A, Twetman S. Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontol Scand. 2011;69:321–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J. 2006;30:55–60.Google Scholar
  71. 71.
    Bosch M, Nart J, Audivert S, Bonachera MA, Alemany AS, Fuentes MC, Cune J. Isolation and characterization of probiotic strains for improving oral health. Arch Oral Biol. 2012;57:539–49.PubMedCrossRefGoogle Scholar
  72. 72.
    Almståhl A, Lingstrom P, Eliasson L, Carlen A. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains. Clin Oral Investig. 2013;17:1465–70.Google Scholar
  73. 73.
    Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J of Oral Microbiol. 2011;3: 5771 DOI:  10.3402/jom.v3i0.5771.
  75. 75.
    Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA. Candida biofilms and oral candidosis: treatment and prevention. Periodontol 2000. 2011;55:250–65.Google Scholar
  76. 76.
    den Hertog AL, van Marle J, van Veen HA, van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J. 2005;388:689–95.CrossRefGoogle Scholar
  77. 77.
    Leito JT, Ligtenberg AJ, Nazmi K, Veerman EC. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans. FEMS Yeast Res. 2009;9:1102–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Guobis Z, Kareiviene V, Baseviciene N, Paipaliene P, Niedzelskiene I, Sabalys G, Kubilius R, Gervickas A. Microflora of the oral cavity in patients with xerostomia. Medicina (Kaunas). 2011;47:646–51.Google Scholar
  79. 79.
    Redding SW. The role of yeasts other than Candida albicans in oropharyngeal candidiasis. Curr Opin Infect Dis. 2001;14:673–7.Google Scholar
  80. 80.
    Redding SW, Dahiya MC, Kirkpatrick WR, Coco BJ, Patterson TF, Fothergill AW, Rinaldi MG, Thomas Jr CR. Candida glabrata is an emerging cause of oropharyngeal candidiasis in patients receiving radiation for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:47–52.Google Scholar
  81. 81.
    Antoniazzi RP, Miranda LA, Zanatta FB, Islabao AG, Gustafsson A, Chiapinotto GA, Oppermann RV. Periodontal conditions of individuals with Sjögren’s syndrome. J Periodontol. 2009;80:429–35.PubMedCrossRefGoogle Scholar
  82. 82.
    Rhodus NL, Michalowicz BS. Periodontal status and sulcular Candida albicans colonization in patients with primary Sjögren’s Syndrome. Quintessence Int. 2005;36:228–33.PubMedGoogle Scholar
  83. 83.
    Hahnel S, Behr M, Handel G, Burgers R. Saliva substitutes for the treatment of radiation-induced xerostomia–a review. Support Care Cancer. 2009;17:1331–43.PubMedCrossRefGoogle Scholar
  84. 84.
    van der Hoeven JS, Camp PJM. Synergistic degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res. 1991;70:1041–4.Google Scholar
  85. 85.
    Wong L, Sissons CH. Human dental plaque microcosm biofilms: effect of nutrient variation on calcium phosphate deposition and growth. Arch Oral Biol. 2007;52:280–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Weerkamp AH, Wagner K, Vissink A, Gravenmade EJ. Effect of the application of a mucin-based saliva substitute on the oral microflora of xerostomic patients. J Oral Pathol. 1987;16:474–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Wolinsky LE, Seto B, Cerveny R. Effect of saliva substitutes upon binding of selected oral bacteria to hydroxyapatite. Caries Res. 1985;19:507–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Sugiura Y, Soga Y, Tanimoto I, Kokeguchi S, Nishide S, Kono K, Takahashi K, Fujii N, Ishimaru F, Tanimoto M, Yamabe K, Tsutani S, Nishimura F, Takashiba S. Antimicrobial effects of the saliva substitute, Oralbalance, against microorganisms from oral mucosa in the hematopoietic cell transplantation period. Support Care Cancer. 2008;16:421–4.Google Scholar
  89. 89.
    Kirstila V, Lenander-Lumikari M, Soderling E, Tenovuo J. Effects of oral hygiene products containing lactoperoxidase, lysozyme, and lactoferrin on the composition of whole saliva and on subjective oral symptoms in patients with xerostomia. Acta odontol Scan. 1999;54:391–7.CrossRefGoogle Scholar
  90. 90.
    Epstein JB, Stevenson-Moore P. A clinical comparative trial of saliva substitutes in radiation-induced salivary gland hypofunction. Spec Care Dentist. 1992;12:21–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Gil-Montoya JA, Guardia-Lopez I, Gonzalez-Moles MA. Evaluation of the clinical efficacy of a mouthwash and oral gel containing the antimicrobial proteins lactoperoxidase, lysozyme and lactoferrin in elderly patients with dry mouth–a pilot study. Gerodontology. 2008;25:3–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Sugiura Y, Soga Y, Yamabe K, Tsutani S, Tanimoto I, Maeda H, Kokeguchi S, Fujii N, Ishimaru F, Tanimoto M, Nishimura F, Takashiba S. Total bacterial counts on oral mucosa after using a commercial saliva substitute in patients undergoing hematopoietic cell transplantation. Support Care Cancer. 2010;18:395–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Oral BiochemistryAcademic Centre for Dentistry AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Oral Microbiology and ImmunologySahlgrenska Academy, University of GothenburgGothenburgSweden

Personalised recommendations