Advertisement

Flexible Self-reconfigurable Robots Based on Thermoplastic Adhesives

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 104)

Abstract

The paper introduces a concept of flexible self-reconfiguration that makes use of thermoplastic adhesives (TPAs) in robotic systems. TPAs are polymer based materials that exhibit several interesting mechanical properties beneficial for self-reconfiguration. For example, thermoplasticity enables robots to flexibly fabricate a number of different mechanical structures, while temperature-dependent adhesion allows systems to make robust connection and disconnection. This paper introduces robotic self-reconfiguration by using three TPA handling processes, i.e. structure formation, connection and disconnection. These processes are then examined in a few practical application scenarios, i.e. pick and place operations of a variety of objects, autonomous body extension of robotic manipulators, and robots climbing on uneven surfaces. And finally we discusses challenges and perspectives of this approach.

Keywords

Robotic System Robot Manipulator Robotic Manipulator Active Connection Modular Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boncheva, M., Bruzewicz, D.A., Whitesides, G.M.: Millimeter-scale self-assembly and its applications. Pure Appl. Chem. 75(5), 621–630 (2003)CrossRefGoogle Scholar
  2. 2.
    Brodbeck, L., Iida, F.: Enhanced robotic body extension with modular units. In: Proc. 2012 IEEE/RSJ IROS (2012) (in press)Google Scholar
  3. 3.
    Brodbeck, L., Wang, L., Iida, F.: Robotic body extension based on hot melt adhesives. In: Proc. 2012 IEEE ICRA, pp. 4322–4327 (2012)Google Scholar
  4. 4.
    Chirikjian, G.S.: Reviewing the issues of robotic self-X. IEEE Robot Autom. Mag. 14(4), 6–7 (2007)CrossRefGoogle Scholar
  5. 5.
    Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in a multirobot system. IEEE Robot Automat. Mag. 14(4), 18–25 (2007)CrossRefGoogle Scholar
  6. 6.
    Diller, E., Pawashe, C., Floyd, S., Sitti, M.: Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot Res. 30, 1667–1680 (2011)CrossRefGoogle Scholar
  7. 7.
    Jones, R., Haufe, P., Sells, E., et al.: RepRap: The replicating rapid prototyper. Robotica 29, 177–191 (2011)CrossRefGoogle Scholar
  8. 8.
    Kurokawa, H., Tomita, K., Kamimura, A., et al.: Distributed self-reconfiguration of M-TRAN III modular. Int. J. Robot Res. 27(3-4), 373–386 (2008)CrossRefGoogle Scholar
  9. 9.
    Li, W., Bouzidi, L., Narine, S.S.: Current research and development status and prospect of Hot-Melt-Adhesives: A review. Ind. Eng. Chem. Res. 47, 7524–7532 (2008)CrossRefGoogle Scholar
  10. 10.
    Osswald, M., Iida, F.: A climbing robot based on hot melt adhesion. In: Amato, N. (ed.) Proc. 2011 IEEE/RSJ IROS, pp. 5107–5112 (2011)Google Scholar
  11. 11.
    Revzen, S., Bhoite, M., Macasieb, A., et al.: Structure synthesis on-the-fly in a modular robot. In: Amato, N. (ed.) Proc. 2011 IEEE/RSJ IROS, pp. 4797–4802 (2011)Google Scholar
  12. 12.
    Stoy, K., Brandt, D., Christensen, D.J.: Self-reconfigurable robots: An introduction. MIT Press, Cambridge (2010)Google Scholar
  13. 13.
    Wang, L., Iida, F.: Physical connection and disconnection control based on hot melt adhesives. IEEE-ASME Trans Mechatron (2012a), doi:10.1109/TMECH.2012.2202558Google Scholar
  14. 14.
    Wang, L., Iida, F.: Towards “soft” self-reconfigurable robots. In: Proc. 4th IEEE RAS/EMBS BioRob., pp. 593–598 (2012b)Google Scholar
  15. 15.
    Wang, L., Neuschaefer, F., Bernet, R., et al.: Design considerations for attachment and detachment in robot climbing with hot melt adhesives. In: Proc. 2012 IEEE ICRA, pp. 1181–1186 (2012)Google Scholar
  16. 16.
    Wang, L., Graber, L., Iida, F.: Climbing vertical terrains with a self-contained robot. In: Proc. 2011 IEEE/RSJ IROS 2011 (2012) (in press)Google Scholar
  17. 17.
    Yim, M., Shen, W.M., Salemi, B., et al.: Modular self-reconfigurable robot systems: Challenges and opportunities for the future. IEEE Robot Autom. Mag. 14(1), 43–52 (2007)Google Scholar
  18. 18.
    Yun, S., Rus, D.: Optimal self-assembly of modular manipulators with active and passive modules. Auton. Robot 31(2-3), 183–207 (2011)CrossRefGoogle Scholar
  19. 19.
    Zykov, V., Mytilinaios, E., Desnoyer, M., et al.: Evolved and designed self-reproducing modular robotics. IEEE Trans. Robot 23(2), 308–319 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Bio-Inspired Robotics Laboratory, Institute of Robotics and Intelligent SystemsETH ZurichZurichSwitzerland

Personalised recommendations