Abstract
Is it possible to determine only by observing the behavior of a user what are his interests for a media? The aim of this project is to develop an application that can detect whether or not a user is viewing a content on the TV and use this information to build the user profile and to make it evolve dynamically. Our approach is based on the use of a 3D sensor to study the movements of a user’s head to make an implicit analysis of his behavior. This behavior is synchronized with the TV content (media fragments) and other user interactions (clicks, gestural interaction) to further infer viewer’s interest. Our approach is tested during an experiment simulating the attention changes of a user in a scenario involving second screen (tablet) interaction, a behavior that has become common for spectators and a typical source of attention switches.
Keywords
- user tracking
- face detection
- face direction
- face tracking
- visual attention
- interest
- TV
- gesture
Download conference paper PDF
References
Linkedtv project, http://www.linkedtv.eu
Node js, http://nodejs.org/
Abe, K., Makikawa, M.: Spatial setting of visual attention and its appearance in head-movement. IFMBE Proceedings 25/4, 1063–1066 (2010), http://dx.doi.org/10.1007/978-3-642-03882-2_283
Aldoma, A.: 3D face detection and pose estimation in pcl (September 2012)
Bailly, G., Vo, D.B., Lecolinet, E., Guiard, Y.: Gesture-aware remote controls: Guidelines and interaction technique. In: Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI 2011, pp. 263–270. ACM, New York (2011), http://doi.acm.org/10.1145/2070481.2070530
Bettens, F., Todoroff, T.: Real-time dtw-based gesture recognition external object for max/msp and puredata. In: Proc. SMC 2009, pp. 30–35 (2009)
Bevilacqua, F., Guédy, F., Schnell, N., Fléty, E., Leroy, N.: Wireless sensor interface and gesture-follower for music pedagogy. In: Proceedings of the 7th International Conference on New Interfaces for Musical Expression, NIME 2007, pp. 124–129. ACM, New York (2007), http://doi.acm.org/10.1145/1279740.1279762
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001), http://dx.doi.org/10.1023/A%3A1010933404324
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985), http://josaa.osa.org/abstract.cfm?URI=josaa-2-7-1160
Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. Cvpr 2011, 617–624 (2011), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5995458
Fanelli, G., Gall, J., Van Gool, L.: Real time 3d head pose estimation: Recent achievements and future challenges. In: 2012 5th International Symposium on Communications Control and Signal Processing (ISCCSP), pp. 1–4 (2012)
Fanelli, G., Dantone, M., Gall, J., Fossati, A., Gool, L.: Random Forests for Real Time 3D Face Analysis. International Journal of Computer Vision 101(3), 437–458 (2012), http://link.springer.com/10.1007/s11263-012-0549-0
Fanelli, G., Dantone, M., Gall, J., Fossati, A., Gool, L.: Random forests for real time 3d face analysis. International Journal of Computer Vision 101, 437–458 (2013), http://dx.doi.org/10.1007/s11263-012-0549-0
Fanelli, G., Weise, T., Gall, J., Van Gool, L.: Real time head pose estimation from consumer depth cameras. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 101–110. Springer, Heidelberg (2011)
Venturini, F., Marshall, C., Di Alberto, E.: Hearts, minds and wallets winning the battle for consumer trust accenture video-over-internet consumer survey (2012)
Frisson, C., Keyaerts, G., Grisard, F., Dupont, S., Ravet, T., Zajga, F., Colmenares-Guerra, L., Todoroff, T., Dutoit, T.: Mashtacycle: On-stage improvised audio collage by contentbased similarity and gesture recognition. In: 5th International Conference on Intelligent Technologies for Interactive Entertainment, INTETAIN (2013)
Gaschler, A., Jentzsch, S., Giuliani, M., Huth, K., de Ruiter, J., Knoll, A.: Social behavior recognition using body posture and head pose for human-robot interaction. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2128–2133 (October 2012), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385460
Kistler, F.: Fubi- full body interaction framework (2011), http://www.informatik.uni-augsburg.de/lehrstuehle/hcm/projects/tools/fubi/
Kistler, F., Endrass, B., Damian, I., Dang, C., Andr, E.: Natural interaction with culturally adaptive virtual characters. Journal on Multimodal User Interfaces, 1–9, http://dx.doi.org/10.1007/s12193-011-0087-z , doi:10.1007/s12193-011-0087-z
Kistler, F., Sollfrank, D., Bee, N., André, E.: Full body gestures enhancing a game book for interactive story telling. In: Si, M., Thue, D., André, E., Lester, J.C., Tanenbaum, J., Zammitto, V. (eds.) ICIDS 2011. LNCS, vol. 7069, pp. 207–218. Springer, Heidelberg (2011)
Kuchař, J., Kliegr, T.: Gain: Web service for user tracking and preference learning - a smart tv use case. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 467–468. ACM, New York (2013), http://doi.acm.org/10.1145/2507157.2508217
Leroy, J., Rocca, F., Mancaş, M., Gosselin, B.: 3D head pose estimation for tv setups. In: Mancas, M., d’ Alessandro, N., Siebert, X., Gosselin, B., Valderrama, C., Dutoit, T. (eds.) Intetain. LNICST, vol. 124, pp. 55–64. Springer, Heidelberg (2013)
Leroy, J., Rocca, F., Mancas, M., Gosselin, B.: Second screen interaction: An approach to infer tv watcher’s interest using 3d head pose estimation. In: Proceedings of the 22nd International Conference on World Wide Web Companion, WWW 2013 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp. 465–468 (2013)
Microsoft: Kinect sensor, http://www.xbox.com/kinect
Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19229078
PrimeSense: Capri sensor, http://www.primesense.com/news/primesense-unveils-capri
Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., Dutoit, T.: Rare2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Processing: Image Communication 28(6), 642–658 (2013), http://www.sciencedirect.com/science/article/pii/S0923596513000489
Vatavu, R.: A comparative study of user-defined handheld vs. freehand gestures for home entertainment environments. Journal of Ambient Intelligence and Smart Environments
Vatavu, R.D.: User-defined gestures for free-hand tv control. In: Proceedings of the 10th European Conference on Interactive Tv and Video, EuroiTV 2012, pp. 45–48. ACM, New York (2012), http://doi.acm.org/10.1145/2325616.2325626
Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image and Vision Computing 27(12), 1743–1759 (2009), http://www.sciencedirect.com/science/article/pii/S0262885608002485
Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1083–1092. ACM, New York (2009), http://doi.acm.org/10.1145/1518701.1518866
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFIP International Federation for Information Processing
About this paper
Cite this paper
Leroy, J. et al. (2014). KINterestTV - Towards Non–invasive Measure of User Interest While Watching TV. In: Rybarczyk, Y., Cardoso, T., Rosas, J., Camarinha-Matos, L.M. (eds) Innovative and Creative Developments in Multimodal Interaction Systems. eNTERFACE 2013. IFIP Advances in Information and Communication Technology, vol 425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55143-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-55143-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55142-0
Online ISBN: 978-3-642-55143-7
eBook Packages: Computer ScienceComputer Science (R0)