Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8336))

Abstract

The term small-scale robotics describes a wide variety of miniature robotic systems, ranging from millimeter sized devices down to autonomous mobile systems with dimensions measured in nanometers. Unified by the common goal of enabling applications that require tiny mobile robots, research in small-scaled robotics has produced a variety of novel miniature robotic systems in the last decade. As the size of the robots scale down, the physics that governs the mode of operation, power delivery, and control change dramatically, restricting how these devices operate, and requiring novel engineering solutions to enable their functionality. This chapter provides an overview and introduction to small-scale robotics, drawing parallels to systems presented later in the book. Comparison to biological systems is also presented, using biology to speculate regarding future capabilities of robotic systems at the various size scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R.P.: There’s plenty of room at the bottom. Journal of Microelectromechanical Systems 1(1), 60–66 (1992)

    Article  Google Scholar 

  2. Feynman, R.P.: Infinitesimal machinery. Journal of Microelectromechanical Systems 2(1), 4–14 (1993)

    Article  MathSciNet  Google Scholar 

  3. Flynn, A.M.: Gnat robots (and how they will change robotics). In: IEEE Micro Robots and Teleoperators Workshop: An Investigation of Micromechanical Structures, Actuators and Sensors, Hyannis, MA (1987)

    Google Scholar 

  4. Kahn, J.M., Katz, R.H., Katz, Y.H., Pister, K.S.J.: Emerging challenges: Mobile networking for “smart dust”. Journal of Comunications and Networks 2, 188–196 (2000)

    Article  Google Scholar 

  5. Hollar, S., Flynn, A., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: The Proceedings of the the Sixteenth Annual International Conference on Micro Electro Mechanical Systems, MEMS 2003, Kyoto, Japan, January 19-23, pp. 706–711 (2003)

    Google Scholar 

  6. Donald, B.R., Levey, C.G., McGray, C., Paprotny, I., Rus, D.: An untethered, electrostatic, globally-controllable MEMS micro-robot. Journal of Microelectromechanical Systems 15(1), 1–15 (2006)

    Article  Google Scholar 

  7. Yesin, K.B., Vollmers, K., Nelson, B.J.: Actuation, sensing, and fabrication for in vivo magnetic microrobots. In: Ang Jr., M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 321–330. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Majeti, N.V., Kumar, R.: Nano and microparticles as controlled drug delivery devices. Journal of Pharmaceutical Sciences 3(2), 234–258 (2000)

    Google Scholar 

  9. Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. Journal of Americal Chemical Society 113(13), 5131–5133 (1991)

    Article  Google Scholar 

  10. Sabelhaus, A.P., Mirsky, D., Hill, M., Martins, N.C., Bergbreiter, S.: TinyTeRP: A tiny terrestrial robotic platform with modular sensing capabilities. In: IEEE International Conference on Robotics and Automation, karisruhe, Germany (May 2013)

    Google Scholar 

  11. Hoover, A.M., Steltz, E., Fearing, R.S.: RoACH: an autonomous 2.4g crawling hexapod robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (September 2008)

    Google Scholar 

  12. Epson: Monsieur: The ultraminiature robot that propelled itself into the Guinness Book (March 1993), http://www.epson.co.jp/e/company/milestones_23_monsieur.htm

  13. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2), 341–347 (2008)

    Article  Google Scholar 

  14. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  15. Churaman, W.A., Currano, L.J., Morris, C.J., Rajkowski, J.E., Bergbreiter, S.: The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. Journal of Microelectromechanical Systems 21(1), 198–205 (2012)

    Article  Google Scholar 

  16. Ebefors, T., Asplund, T.: A selection of photos of the walking micro-robot (January 2014), http://www.s3.kth.se/mst/research/gallery/microrobot_photo.html

  17. Ebefors, T., Mattsson, J.U., Kälvesten, E., Stemme, G.: A walking silicon micro-robot. In: Transducers, Sendai, Japan, pp. 1202–1205 (1999)

    Google Scholar 

  18. Hollar, S., Flynn, A.M., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)

    Google Scholar 

  19. Shimoyama, I., Miura, H., Suzuki, K., Ezura, Y.: Insect-like microrobots with external skeletons. IEEE Control Systems Magazine 13(1), 37–41 (1993)

    Article  Google Scholar 

  20. Yasuda, T., Shimoyama, I., Miura, H.: Microrobot actuated by a vibration energy field. Sensors and Actuators A Physical 43, 366–370 (1994)

    Article  Google Scholar 

  21. Hollar, S., Flynn, A.M., Bergbreiter, S., Pister, K.S.J.: Robot leg motion in a planarized-SOI, Two-Layer Poly-Si process. Journal of Microelectromechanical Systems 14(4), 725–740 (2005)

    Article  Google Scholar 

  22. Edqvist, E., Snis, N., Mohr, R.C., Scholz, O., Corradi, P., Gao, J., Dieguez, A., Wyrsch, N., Johansson, S.: Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards. Journal of Micromechanics and Microengineering 19(7), 075011(11pp) (2009)

    Google Scholar 

  23. Churaman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (September 2011)

    Google Scholar 

  24. Zollikofer, C.: Stepping patterns in ants - influence of speed and curvature. Journal of Experimental Biology 192(1), 95–106 (1994)

    Google Scholar 

  25. Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. Pervasive Computing, 24–33 (October 2004)

    Google Scholar 

  26. Zhu, D., Qi, Q., Wang, Y., Lee, K.M., Foong, S.: A prototype mobile sensor network for structural health monitoring. In: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, vol. 7294 (April 2009)

    Google Scholar 

  27. Gage, D.W.: How to communicate with zillions of robots. In: SPIE Mobile Robots VIII, Boston, vol. 2058, pp. 250–257 (1993)

    Google Scholar 

  28. Driesen, W., Varidel, T., Regnier, S., Breguet, J.M.: Micro manipulation by adhesion with two collaborating mobile micro robots. Journal of Micromechanics and Microengineering 15(10), S259–S267 (2005)

    Google Scholar 

  29. Martel, S.: Fundamental principles and issues of high-speed piezoactuated three-legged motion for miniature robots designed for nanometer-scale operations. The International Journal of Robotics Research 24(7), 575–588 (2005)

    Article  Google Scholar 

  30. Trimmer, W.: Microrobots and micromechanical systems. Sensors and Actuators 19(3), 267–287 (1989)

    Article  Google Scholar 

  31. Werfel, J.: Anthills built to order: Automating construction with artificial swarms. PhD dissertation, Massachusetts Institute of Technology (May 2006)

    Google Scholar 

  32. Karagozler, M.E., Goldstein, S.C., Reid, J.R.: Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 2763–2769 (October 2009)

    Google Scholar 

  33. Goldstein, S.C., Mowry, T.C.: Claytronics: A scalable basis for future robots. In: RoboSphere 2004, Moffett Field, CA (November 2004)

    Google Scholar 

  34. Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: From current achievements to open challenges. IEEE Reviews in Biomedical Engineering 4, 59–72 (2011)

    Article  Google Scholar 

  35. Platt, S., Hawks, J., Rentschler, M.: Vision and task assistance using modular wireless in vivo surgical robots. IEEE Transactions on Biomedical Engineering 56(6), 1700–1710 (2009)

    Article  Google Scholar 

  36. Schultz, T.R.: In search of ant ancestors. Proceedings of the National Academy of Sciences 97(26), 14028–14029 (2000)

    Article  Google Scholar 

  37. Zollikofer, C.: Stepping patterns in ants - influence of load. Journal of Experimental Biology 192(1), 119–127 (1994)

    Google Scholar 

  38. Burrows, M.: Froghopper insects leap to new heights. Nature 424, 509 (2003)

    Article  Google Scholar 

  39. Frye, M.A., Dickinson, M.H.: Fly flight. Neuron 32(3), 385–388 (2001)

    Article  Google Scholar 

  40. Andersen Borg, C.M., Bruno, E., Kiørboe, T.: The kinematics of swimming and relocation jumps in copepod nauplii. Plos One 7(10), e47486 (2012)

    Google Scholar 

  41. Lipp, A., Wolf, H., Lehmann, F.: Walking on inclines: energetics of locomotion in the ant camponotus. The Journal of Experimental Biology 208, 707–719 (2005)

    Article  Google Scholar 

  42. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. International Journal of Robotics Research 20, 616–631 (2001)

    Article  Google Scholar 

  43. Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research 25(9), 903–912 (2006)

    Article  Google Scholar 

  44. Zufferey, J.C., Klaptocz, A., Beyeler, A., Nicoud, J.D., Floreano, D.: A 10-gram vision-based flying robot. Advanced Robotics 21, 1671–1684 (2007)

    Article  Google Scholar 

  45. Donald, B.R., Levey, C.G., McGray, C., Rus, D., Sinclair, M.: Power delivery and locomotion of untethered micro-actuators. Journal of Microelectromechanical Systems 10(6), 947–959 (2003)

    Article  Google Scholar 

  46. Valencia, M., Atallah, T., Castro, D., Conchouso, D., Dosari, M., Hammad, R., Rawashdeh, E., Zaher, A., Kosel, J., Foulds, I.G.: Development of untethered SU-8 polymer scratch drive microrobots. In: Proceedings of the 24th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2011), pp. 1221–1224 (January 2011)

    Google Scholar 

  47. Floyd, S., Pawashe, C., Sitti, M.: An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: The Proceedings of IEEE International Conference on Robotics and Automation, ICRA (2008)

    Google Scholar 

  48. Frutiger, D.R., Kratochvil, B.E., Vollmers, K., Nelson, B.J.: Magmites wireless resonant magnetic microrobots. In: The Proceedings of IEEE International Conference on Robotics and Automation, ICRA (May 2008)

    Google Scholar 

  49. Ghosh, A., Fischer, P.: Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters 9(6), 2243–2245 (2009)

    Article  Google Scholar 

  50. Jing, W., Pagano, N., Cappelleri, D.: A novel micro-scale magnetic tumbling microrobot. Journal of Micro-Bio Robotics 8(1), 1–12 (2013)

    Article  Google Scholar 

  51. Martel, S.: Controlled bacterial micro-actuation. In: Proc. of the Int. Conf. on Microtechnologies in Medicine, pp. 89–92 (May 2006)

    Google Scholar 

  52. Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomedical Microdevices 14(6), 1009–1017 (2012)

    Article  Google Scholar 

  53. Martel, S.: Bacterial microsystems and microrobots. Biomedical Microdevices 14, 1033–1045 (2012)

    Article  Google Scholar 

  54. Sanchez, S., Solovev, A.A., Harazim, S.M., Deneke, C., Mei, Y.F., Shmidt, O.G.: The smallest man-made jet engine. The Chemical Record 11(6), 367–370 (2011)

    Article  Google Scholar 

  55. Chiou, P.Y.: Massively Parallel Optical Manipulation of Single Cells, Micro- and Nano-particles on Optoelectronic Devices. PhD thesis, University of California, Berkeley (2005)

    Google Scholar 

  56. Erb, R.M., Jenness, N.J., Clark, R.L., Yellen, B.B.: Towards holonomic control of janus particles in optomagnetic traps. Advanced Materials 21, 1–5 (2009)

    Article  Google Scholar 

  57. Donald, B.R., Levey, C.G., Paprotny, I.: Planar microassembly by parallel actuation of MEMS microrobots. Journal of Microelectromechanical Systems 17(4), 789–808 (2008)

    Article  Google Scholar 

  58. Donald, B.R.: Building very small mobile micro robots. Inaugural Lecture, Nanotechnology Public Lecture Series. ( MIT (Research Laboratory for Electronics, Electrical Engineering and Computer Science, and Microsystems Technology, Laboratories), Cambridge (2007), http://mitworld.mit.edu/video/463/

  59. Becker, A.T.: Ensemble Control of Robotic Systems. PhD thesis, University of Illinois at Urbana-Champaign (2012)

    Google Scholar 

  60. Khademhosseini, A., Langer, R., Borstein, J., Vacanti, J.P.: Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Science 103(8), 2480–2487 (2006)

    Article  Google Scholar 

  61. Popa, D., Stephanou, H.E.: Micro and meso scale robotic assembly. SME Journal of Manufacturing Processes 6(1), 52–71 (2004)

    Article  Google Scholar 

  62. Donald, B.R., Levey, C., Paprotny, I., Rus, D.: Planning and control for microassembly using stress-engineered. International Journal of Robotics Research 32(2), 218–246 (2013)

    Article  Google Scholar 

  63. Popa, D., Cappelleri, D., Paprotny, I.: Mobile microrobotic challenge 2014 (2013), http://www.uta.edu/ee/ngs/mmc/rules.pdf

  64. Lyon, W.F.: Ohio state university extension fact sheet: house dust mites (1991), http://ohioline.osu.edu/hyg-fact/2000/2157.html

  65. Nishiharra, E., Shimmen, T., Sonobe, S.: Functional characterization of contractile vacuole isolated from amoeba proteus. Cell Structure and Function 29(4), 85–90 (2004)

    Article  Google Scholar 

  66. Huber, J.T.: The genus dicopomorha (hymenoptera, mymaridae) in Africa and a key to alaptus-group genera. ZooKeys 20, 233–244 (2009)

    Article  Google Scholar 

  67. Purcell, E.M.: Life at low reynolds number. American Journal of Physics 45, 3–11 (1977)

    Article  Google Scholar 

  68. Davis, M.E.: The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Molecular Pharmaceutics 6(3), 659–668 (2009)

    Article  Google Scholar 

  69. Choi, C.H.J., Zuckerman, J.E., Webster, P., Davis, M.E.: Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Science 108(16), 6656–6661 (2011)

    Article  Google Scholar 

  70. Zuckerman, J.E., Choi, C.H.J., Han, H., Davis, M.E.: Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proceedings of the National Academy of Science 109(8), 3137–3142 (2012)

    Article  Google Scholar 

  71. Seeman, N.C.: Nucleic acid nanostructures and topology. Angewandte Chemie International Edition 37(23), 3220–3238 (1998)

    Article  Google Scholar 

  72. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  73. Rothemund, P.W.K.: Folding dna to create nanoscale shapes and patterns. Nature 446, 297–302

    Google Scholar 

  74. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  75. Bissell, R., Cordova, E., Kaifer, A.E., Stoddart, J.F.: A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994)

    Article  Google Scholar 

  76. Hess, H., Clemmens, J., Qin, D., Howard, J., Vogel, V.: Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters 1(5), 235–239 (2001)

    Article  Google Scholar 

  77. Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1), 39–50 (1985)

    Article  Google Scholar 

  78. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Letters 5(11), 2330–2334 (2005)

    Article  Google Scholar 

  79. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nagreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  80. McGrath, S., Sinderen, D.: Bacteriophage: Genetics and Molecular Biology. Caister Academic Press (2007)

    Google Scholar 

  81. Centers for Disease Control and Prevention: Seasonal inlueanza, flu (2013), http://www.cdc.gov/flu/ (downloaded on December 30, 2013)

  82. Goshima, G., Vale, R.D.: Cell cycle-dependent dynamics and regulation of mototic kinesins in drosophila s2 cells. Molecular Biology of the Cell 16(8), 3896–3907 (2005)

    Article  Google Scholar 

  83. Lehman, I.R., Bessman, M.J., Simms, E.S., Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. i. Preparation of substrates and partial purification of an enzyme from escheria coli. Journal of Biological Chemistry 233(1), 163–170 (1958)

    Google Scholar 

  84. Lehman, I.R.: Dna ligase: structure, mechanism, and function. Science 186(4166), 790–797 (1974)

    Article  Google Scholar 

  85. Pulskamp, J.S., Polcawich, R.G., Rudy, R.Q., Bedair, S.S., Proie, R.M., Ivanov, T., Smith, G.L.: Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bulletin 37(11), 1062–1070 (2012)

    Article  Google Scholar 

  86. Penskiy, I., Bergbreiter, S.: Optimized electrostatic inchworm motors using a flexible driving arm. Journal of Micromechanics and Microengineering 23(1), 015018 (2013)

    Google Scholar 

  87. Gerratt, A.P., Bergbreiter, S.: Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Materials and Structures 22(1), 014010 (2013)

    Google Scholar 

  88. Whitney, J.P., Sreetharan, P.S., Ma, K.Y., Wood, R.J.: Pop-up book MEMS. Journal of Micromechanics and Microengineering 21(11), 115021 (2011)

    Article  Google Scholar 

  89. Tang, Y., Chen, C., Khaligh, A., Penskiy, I., Bergbreiter, S.: An ultra-compact dual-stage converter for driving electrostatic actuators in mobile microrobots. IEEE Transactions on Power Electronics 29(6), 2991–3000 (2014)

    Article  Google Scholar 

  90. Karpelson, M., Wei, G.Y., Wood, R.J.: Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical 176, 78–89 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paprotny, I., Bergbreiter, S. (2014). Small-Scale Robotics : An Introduction. In: Paprotny, I., Bergbreiter, S. (eds) Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. ICRA 2013. Lecture Notes in Computer Science(), vol 8336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55134-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55134-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55133-8

  • Online ISBN: 978-3-642-55134-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics