Computer Vision Analysis of a Melting Interface Problem with Natural Convection

  • Gisele Maria R. Vieira
  • Fabiana R. Leta
  • Pedro B. Costa
  • Sergio L. Braga
  • Dominique Gobin
Chapter
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 4)

Abstract

This study presents some Computer Vision techniques to analyze a phase change problem with natural convection. The analysis and interpretation of images are important to understand the phenomenon under study. Methods of image processing and analysis are used to validate the mathematical model and to automate the process of extracting information from the experimental model. The images produced by the experiment show the melting of a vertical ice layer into a heated rectangular cavity in the presence of natural convection and maximum density.

Keywords

Computer vision analysis Natural convection Melting interface Image segmentation Digital filter 

List of nomenclature

A

Acrylic wall

C

Copper wall

cp

Specific heat

c*(z*,t*), c(z,t)

Dimensional and dimensionless positions of the interface

E

Heat exchanger

Fo

Fourier number

Grmod

Modified Grashof number

H

Height of the enclosure

I

Insulation

k

Thermal conductivity

L

Liquid cavity maximum width

LF

Latent heat

P* and P

Dimensional and dimensionless pressures

Pr

Prandtl number

\({{\partial c} \mathord{\left/ {\vphantom {{\partial c} {\partial \tau }}} \right. \kern-0pt} {\partial \tau }}\)

Velocity of the interface in the \(\bar{n}\) direction

Ri

Resistances

Ste

Stefan number

t* and t

Dimensional and dimensionless times

Tav

Average temperature

TFus

Fusion temperature of the material

TH and T0

Temperatures of the hot and the cold walls

Ti

Thermocouples

TM

Temperature of the maximum density

\(\bar{V}\)

Dimensionless velocity vector

W

Removable window

y* and y

Horizontal dimensional and dimensionless coordinates

z* and z

Vertical dimensional and dimensionless coordinates

Z and Y

Computational dimensionless coordinates

α

Thermal diffusivity

\(\varDelta T = T_{H} - T_{\text{Fus}}\)

Temperature difference

\(\varDelta T_{\hbox{max} }\)

Maximum temperature interval considered

γ

Phenomenological coefficient

\(\upsilon\)

Kinematic viscosity

θ

Dimensionless temperature

ρM

Maximum density

ρref

Reference density

References

  1. 1.
    Bovik, A. (ed.): Handbook of Image and Video, 2nd edn. Elsevier Academic Press, New York (2005)Google Scholar
  2. 2.
    Goshtasby, A.A.: 2-D and 3-D Image Registration. Wiley, Hoboken (2005)Google Scholar
  3. 3.
    Palmer, S.E.: Vision Science—Photons to Phenomenology. The MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Nielsen, F.: Visual Computing: Geometry, Graphics and Vision. Charles River Media Inc., Massachusetts (2005)Google Scholar
  5. 5.
    Wolff, F., Viskanta, R.: Melting of a pure metal from a vertical wall. Exp. Heat Transf. 1, 17–30 (1987)CrossRefGoogle Scholar
  6. 6.
    Benard, C., Gobin, D., Martinez, F.: Melting in rectangular enclosures: experiments and numerical simulations. J. Heat Transf. 107, 794–803 (1985)CrossRefGoogle Scholar
  7. 7.
    Kim, C.J., Kaviany, M.: A numerical method for phase-change problems with convection and diffusion. Int. J. Heat Mass Transf. 35, 457–467 (1992)CrossRefMATHGoogle Scholar
  8. 8.
    Sparrow, E.M., Patankar, S.V., Ramadhyani, S.: Analysis of melting in the presence of natural convection in the melt region. J. Heat Transf. 99, 520–526 (1977)CrossRefGoogle Scholar
  9. 9.
    Gobin, D., Le Quéré, P.: Melting from an isothermal vertical wall. Comput. Assist. Mech. Eng. Sci. 7–3, 289–306 (2000)Google Scholar
  10. 10.
    Lin, D.S., Nansteel, M.W.: Natural convection heat transfer in a square enclosure containing water near its density maximum. Int. J. Heat Mass Transf. 30, 2319–2329 (1987)CrossRefGoogle Scholar
  11. 11.
    Bennacer, R., Sun, L.Y., Toguyeni, Y., et al.: Structure d’écoulement et transfert de chaleur par convection naturelle au voisinage du maximum de densité. Int. J. Heat Mass Transf. 36–13, 3329–3342 (1993)CrossRefGoogle Scholar
  12. 12.
    Braga, S.L., Viskanta, R.: Transient natural convection of water near its density extremum in a rectangular cavity. Int. J. Heat Mass Transf. 35–4, 861–887 (1992)CrossRefGoogle Scholar
  13. 13.
    Kowalewsky, T.A., Rebow, M.: Freezing of water in a differentially heated cubic cavity. Int. J. Comput. Fluid Dyn 11, 193–210 (1999)CrossRefGoogle Scholar
  14. 14.
    Tsai, C.W., Yang, S.J., Hwang, G.J.: Maximum density effect on laminar water pipe flow solidification. Int. J. Heat Mass Transf. 41, 4251–4257 (1998)CrossRefGoogle Scholar
  15. 15.
    Yeoh, G.H., Behnia, M., de Vahl Davis, G., et al.: A numerical study of three-dimensional natural convection during freezing of water. Int. J. Num. Method Eng 30, 899–914 (1990)CrossRefMATHGoogle Scholar
  16. 16.
    Gebhart, B., Mollendorf, J.: A new density relation for pure and saline water. Deep Sea Res. 24, 831–848 (1977)CrossRefGoogle Scholar
  17. 17.
    Vieira, G.: Análise numérico-experimental do processo de fusão de substâncias apesentando um máximo de densidade. Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil (1998)Google Scholar
  18. 18.
    Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, McGraw-Hill, New York (1980)MATHGoogle Scholar
  19. 19.
    Gebhart, B., Jaluria, Y., Mahajan, R.L., et al.: Buoyancy-induced flows and transport. Hemisphere Publishing Corporation, New York (1988)MATHGoogle Scholar
  20. 20.
    Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, Florida (1996)MATHGoogle Scholar
  21. 21.
    Pratt, W.K.: Digital Image Processing, 4th edn. Willey, Canada (2007)CrossRefGoogle Scholar
  22. 22.
    Costa, P., Leta, F.R.: Measurement of the aperture area: an edge enhancement algorithms comparison. In: Proceeding of IWSSIP 2010—17th International Conference on Systems, Signals and Image Processing, pp. 499–503, Rio de Janeiro, Brazil (2010)Google Scholar
  23. 23.
    Conci, A., Azevedo, E., Leta, F.R.: Computação Gráfica–Teoria e Prática [v.2]. Elsevier, Rio de Janeiro (2008)Google Scholar
  24. 24.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  25. 25.
    Madisetti, V., Williams, D.B. (eds.): Digital Signal Processing Fundamentals. CRC, USA (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gisele Maria R. Vieira
    • 1
  • Fabiana R. Leta
    • 2
  • Pedro B. Costa
    • 3
  • Sergio L. Braga
    • 4
  • Dominique Gobin
    • 5
  1. 1.Mechanical Engineering DepartmentFederal Center of Technological Education Celso Suckow da Fonseca—CEFET/RJRio de JaneiroBrazil
  2. 2.Mechanical Engineering DepartmentUniversidade Federal Fluminense—UFFNiteróiBrazil
  3. 3.National Institute of Metrology, Quality and TechnologyDuque de CaxiasBrazil
  4. 4.Mechanical Engineering DepartmentCatholic University of Rio de Janeiro—PUC-RJRio de JaneiroBrazil
  5. 5.FAST—CNRS—Université Paris VI, Campus UniversitaireOrsayFrance

Personalised recommendations