Skip to main content

Computer Vision Analysis of a Melting Interface Problem with Natural Convection

  • Chapter
  • First Online:
Visual Computing

Part of the book series: Augmented Vision and Reality ((Augment Vis Real,volume 4))

  • 1286 Accesses

Abstract

This study presents some Computer Vision techniques to analyze a phase change problem with natural convection. The analysis and interpretation of images are important to understand the phenomenon under study. Methods of image processing and analysis are used to validate the mathematical model and to automate the process of extracting information from the experimental model. The images produced by the experiment show the melting of a vertical ice layer into a heated rectangular cavity in the presence of natural convection and maximum density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Acrylic wall

C:

Copper wall

c p :

Specific heat

c*(z*,t*), c(z,t):

Dimensional and dimensionless positions of the interface

E:

Heat exchanger

Fo:

Fourier number

Grmod :

Modified Grashof number

H :

Height of the enclosure

I:

Insulation

k :

Thermal conductivity

L :

Liquid cavity maximum width

L F :

Latent heat

P * and P :

Dimensional and dimensionless pressures

Pr:

Prandtl number

\({{\partial c} \mathord{\left/ {\vphantom {{\partial c} {\partial \tau }}} \right. \kern-0pt} {\partial \tau }}\) :

Velocity of the interface in the \(\bar{n}\) direction

Ri :

Resistances

Ste:

Stefan number

t * and t :

Dimensional and dimensionless times

T av :

Average temperature

T Fus :

Fusion temperature of the material

T H and T 0 :

Temperatures of the hot and the cold walls

Ti :

Thermocouples

T M :

Temperature of the maximum density

\(\bar{V}\) :

Dimensionless velocity vector

W:

Removable window

y * and y :

Horizontal dimensional and dimensionless coordinates

z * and z :

Vertical dimensional and dimensionless coordinates

Z and Y :

Computational dimensionless coordinates

α :

Thermal diffusivity

\(\varDelta T = T_{H} - T_{\text{Fus}}\) :

Temperature difference

\(\varDelta T_{\hbox{max} }\) :

Maximum temperature interval considered

γ :

Phenomenological coefficient

\(\upsilon\) :

Kinematic viscosity

θ :

Dimensionless temperature

ρ M :

Maximum density

ρ ref :

Reference density

References

  1. Bovik, A. (ed.): Handbook of Image and Video, 2nd edn. Elsevier Academic Press, New York (2005)

    Google Scholar 

  2. Goshtasby, A.A.: 2-D and 3-D Image Registration. Wiley, Hoboken (2005)

    Google Scholar 

  3. Palmer, S.E.: Vision Science—Photons to Phenomenology. The MIT Press, Cambridge (1999)

    Google Scholar 

  4. Nielsen, F.: Visual Computing: Geometry, Graphics and Vision. Charles River Media Inc., Massachusetts (2005)

    Google Scholar 

  5. Wolff, F., Viskanta, R.: Melting of a pure metal from a vertical wall. Exp. Heat Transf. 1, 17–30 (1987)

    Article  Google Scholar 

  6. Benard, C., Gobin, D., Martinez, F.: Melting in rectangular enclosures: experiments and numerical simulations. J. Heat Transf. 107, 794–803 (1985)

    Article  Google Scholar 

  7. Kim, C.J., Kaviany, M.: A numerical method for phase-change problems with convection and diffusion. Int. J. Heat Mass Transf. 35, 457–467 (1992)

    Article  MATH  Google Scholar 

  8. Sparrow, E.M., Patankar, S.V., Ramadhyani, S.: Analysis of melting in the presence of natural convection in the melt region. J. Heat Transf. 99, 520–526 (1977)

    Article  Google Scholar 

  9. Gobin, D., Le Quéré, P.: Melting from an isothermal vertical wall. Comput. Assist. Mech. Eng. Sci. 7–3, 289–306 (2000)

    Google Scholar 

  10. Lin, D.S., Nansteel, M.W.: Natural convection heat transfer in a square enclosure containing water near its density maximum. Int. J. Heat Mass Transf. 30, 2319–2329 (1987)

    Article  Google Scholar 

  11. Bennacer, R., Sun, L.Y., Toguyeni, Y., et al.: Structure d’écoulement et transfert de chaleur par convection naturelle au voisinage du maximum de densité. Int. J. Heat Mass Transf. 36–13, 3329–3342 (1993)

    Article  Google Scholar 

  12. Braga, S.L., Viskanta, R.: Transient natural convection of water near its density extremum in a rectangular cavity. Int. J. Heat Mass Transf. 35–4, 861–887 (1992)

    Article  Google Scholar 

  13. Kowalewsky, T.A., Rebow, M.: Freezing of water in a differentially heated cubic cavity. Int. J. Comput. Fluid Dyn 11, 193–210 (1999)

    Article  Google Scholar 

  14. Tsai, C.W., Yang, S.J., Hwang, G.J.: Maximum density effect on laminar water pipe flow solidification. Int. J. Heat Mass Transf. 41, 4251–4257 (1998)

    Article  Google Scholar 

  15. Yeoh, G.H., Behnia, M., de Vahl Davis, G., et al.: A numerical study of three-dimensional natural convection during freezing of water. Int. J. Num. Method Eng 30, 899–914 (1990)

    Article  MATH  Google Scholar 

  16. Gebhart, B., Mollendorf, J.: A new density relation for pure and saline water. Deep Sea Res. 24, 831–848 (1977)

    Article  Google Scholar 

  17. Vieira, G.: Análise numérico-experimental do processo de fusão de substâncias apesentando um máximo de densidade. Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil (1998)

    Google Scholar 

  18. Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  19. Gebhart, B., Jaluria, Y., Mahajan, R.L., et al.: Buoyancy-induced flows and transport. Hemisphere Publishing Corporation, New York (1988)

    MATH  Google Scholar 

  20. Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, Florida (1996)

    MATH  Google Scholar 

  21. Pratt, W.K.: Digital Image Processing, 4th edn. Willey, Canada (2007)

    Book  Google Scholar 

  22. Costa, P., Leta, F.R.: Measurement of the aperture area: an edge enhancement algorithms comparison. In: Proceeding of IWSSIP 2010—17th International Conference on Systems, Signals and Image Processing, pp. 499–503, Rio de Janeiro, Brazil (2010)

    Google Scholar 

  23. Conci, A., Azevedo, E., Leta, F.R.: Computação Gráfica–Teoria e Prática [v.2]. Elsevier, Rio de Janeiro (2008)

    Google Scholar 

  24. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  25. Madisetti, V., Williams, D.B. (eds.): Digital Signal Processing Fundamentals. CRC, USA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Maria R. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vieira, G.M.R., Leta, F.R., Costa, P.B., Braga, S.L., Gobin, D. (2014). Computer Vision Analysis of a Melting Interface Problem with Natural Convection. In: Rodrigues Leta, F. (eds) Visual Computing. Augmented Vision and Reality, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55131-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55131-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55130-7

  • Online ISBN: 978-3-642-55131-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics