How Do Social Interaction Networks Influence Peer Impressions Formation? A Case Study

  • Amiangshu Bosu
  • Jeffrey C. Carver
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 427)


Due to their lack of physical interaction, Free and Open Source Software (FOSS) participants form impressions of their teammates largely based on sociotechnical mechanisms including: code commits, code reviews, mailing-lists, and bug comments. These mechanisms may have different effects on peer impression formation. This paper describes a social network analysis of the WikiMedia project to determine which type of interaction has the most favorable characteristics for impressions formation. The results suggest that due to lower centralization, high interactivity, and high degree of interactions between participants, the code review interactions have the most favorable characteristics to support impression formation among FOSS participants.


Open Source OSS FOSS social network analysis collaboration 


  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. In: Proc. 3rd Int’l. AAAI Conf. on Weblogs and Social Media, San Jose, California (2009)Google Scholar
  3. 3.
    Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: Proc. 3rd Int’l Wksp. on Mining Soft. Repositories, Shanghai, China, pp. 137–143 (2006)Google Scholar
  4. 4.
    Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open source projects. In: Proc. 16th ACM SIGSOFT Int’l Symp. on Foundations of Soft. Eng., Atlanta, Georgia, pp. 24–35 (2008)Google Scholar
  5. 5.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: Software for social network analysis (2002)Google Scholar
  6. 6.
    Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation: A survey. In: Proc. 7th ACM/IEEE Int’l. Symp. on Empirical Soft. Eng. and Measurement, Baltimore, MD, USA, pp. 133–142 (2013)Google Scholar
  7. 7.
    Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Crowston, K., Howison, J.: The social structure of free and open source software development. First Monday 10(2-7) (2005)Google Scholar
  9. 9.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  10. 10.
    Freeman, L.C.: The development of social network analysis: A study in the sociology of science, vol. 1. Empirical Press, Vancouver (2004)Google Scholar
  11. 11.
    Freeman, L.C., Roeder, D., Mulholland, R.R.: Centrality in social networks: II. experimental results. Social Networks 2(2), 119–141 (1980)CrossRefGoogle Scholar
  12. 12.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991)Google Scholar
  13. 13.
    Herraiz, I., Perez, J.G.: Mailing list statsGoogle Scholar
  14. 14.
    Long, Y., Siau, K.: Social network structures in open source software development teams. Journal of Database Mgmt. 18(2), 25–40 (2007)CrossRefGoogle Scholar
  15. 15.
    Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J.M., Ortuño-Perez, M.: Using social network analysis techniques to study collaboration between a FLOSS community and a company. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development, Communities and Quality. IFIP, vol. 275, pp. 171–186. Springer, Boston (2008)CrossRefGoogle Scholar
  16. 16.
    McKenna, K.Y., Bargh, J.A.: Plan 9 from cyberspace: The implications of the internet for personality and social psychology. Personality and Social Psychology Review 4(1), 57–75 (2000)CrossRefGoogle Scholar
  17. 17.
    Oezbek, C., Prechelt, L., Thiel, F.: The onion has cancer: Some social network analysis visualizations of open source project communication. In: Proc. 3rd Int’l. Wksp. on Emerging Trends in Free/Libre/Open Source Soft. Research and Development, Cape Town, South Africa, pp. 5–10 (2010)Google Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Yang, X., Kula, R.G., Erika, C.C.A., Yoshida, N., Hamasaki, K., Fujiwara, K., Iida, H.: Understanding oss peer review roles in peer review social network (PeRSoN). In: Proc. 19th Asia-Pacific Soft. Eng. Conf., Hong Kong, pp. 709–712 (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Amiangshu Bosu
    • 1
  • Jeffrey C. Carver
    • 1
  1. 1.University of AlabamaTuscaloosaUSA

Personalised recommendations