Skip to main content

Considerations for Optimizing the Use of Miniscrew Implants in Orthodontic Practice

  • Chapter
  • First Online:
Book cover Temporary Skeletal Anchorage Devices

Abstract

Miniscrew implants (MSIs) have redefined how orthodontics is practiced. Not only do they provide absolute anchorage, but they also greatly enhance the possibilities of dentofacial orthopedics. It has been reported that approximately 13.5–16.4 % of the miniscrews placed fail. Such rates are excessive and deter many orthodontists, preventing them from, preventing them from taking advantage of these devices. To ameliorate failure rates, MSIs could be optimized by changing their characteristics and individualized depending on the sites where they are to be placed and how they are loaded. For example, increases in MSI length and width, decreases in pitch, and the addition of flutes provide ways to enhance both primary and secondary stability. Increasing the surface area of the screws also increases secondary stability. Excessive cortical bone thickness and density, which enhance primary stability, could be detrimental to secondary stability. Pilot holes can also be problematic and should only be used with thicker and denser bone. Orthodontists must also be meticulous about their placement techniques. They must carefully plan where the MSIs will be placed, they must take care to maintain the screw’s position and orientation throughout the insertion phase, they must evaluate MSI stability after insertion and take corrective action when necessary, and they must ensure proper post-op hygiene. Placement techniques may well turn out to be as important, or even more important, for stability than the screw’s physical characteristics or the characteristics of the placement sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buschang PH, Carrillo R, Ozenbaugh B, Rossouw PE. 2008 survey of AAO members on miniscrew usage. J Clin Orthod. 2008;42(9):513–8.

    PubMed  Google Scholar 

  2. Buschang PH, Carrillo R, Rossouw PE. Orthopedic correction of growing hyperdivergent, retrognathic patients with miniscrew implants. J Oral Maxillofac Surg. 2011;69(3):754–62.

    PubMed Central  PubMed  Google Scholar 

  3. Gainsforth B, Higley L. A study of orthodontic anchorage possibilities in basal bone. Am J Orthod Oral Surg. 1945;31:406–517.

    Google Scholar 

  4. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod. 1983;17(4):266–9.

    PubMed  Google Scholar 

  5. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod. 1997;31(11):763–7.

    PubMed  Google Scholar 

  6. Reynders R, Ronchi L, Bipat S. Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofac Orthop. 2009;135(5):564.e1–19.

    Google Scholar 

  7. Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009;20(12):1351–9.

    PubMed  Google Scholar 

  8. Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142(5):577–595.e7.

    PubMed  Google Scholar 

  9. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100.

    PubMed  Google Scholar 

  10. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 2000;3(1):23–8.

    PubMed  Google Scholar 

  11. Büchter A, Wiechmann D, Gaertner C, Hendrik M, Vogeler M, Wiesmann HP, et al. Load-related bone modelling at the interface of orthodontic micro-implants. Clin Oral Implants Res. 2006;17(6):714–22.

    PubMed  Google Scholar 

  12. Woods PW, Buschang PH, Owens SE, Rossouw PE, Opperman LA. The effect of force, timing, and location on bone-to-implant contact of miniscrew implants. Eur J Orthod. 2009;31(3):232–40.

    PubMed  Google Scholar 

  13. Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop. 2005;127(3):307–13.

    PubMed  Google Scholar 

  14. Migliorati M, Benedicenti S, Signori A, Drago S, Barberis F, Tournier H, et al. Miniscrew design and bone characteristics: an experimental study of primary stability. Am J Orthod Dentofac Orthop. 2012;142(2):228–34.

    Google Scholar 

  15. Ivanoff CJ, Sennerby L, Lekholm U. Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res. 1996;7(2):120–7.

    PubMed  Google Scholar 

  16. Nam O, Yu W, Kyung H. Cortical bone strain during the placement of orthodontic microimplant studies by 3D finite element analysis. Kor J Orthod. 2008;38:228–39.

    Google Scholar 

  17. Ure DS, Oliver DR, Kim KB, Melo AC, Buschang PH. Stability changes of miniscrew implants over time. Angle Orthod. 2011;81(6):994–1000.

    PubMed  Google Scholar 

  18. Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol. 2005;76(7):1066–71.

    PubMed  Google Scholar 

  19. Hitchon PW, Brenton MD, Coppes JK, From AM, Torner JC. Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine. 2003;28(1):9–13.

    PubMed  Google Scholar 

  20. Lyon WF, Cochran JR, Smith L. Actual holding power of various screws in bone. Ann Surg. 1941;114(3):376–84.

    PubMed Central  PubMed  Google Scholar 

  21. Lim S-A, Cha J-Y, Hwang C-J. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234–40.

    PubMed  Google Scholar 

  22. Pithon MM, Figueiredo DSF, Oliveira DD. Mechanical evaluation of orthodontic mini-implants of different lengths. J Oral Maxillofac Surg. 2013;71(3):479–86.

    PubMed  Google Scholar 

  23. Shah AH, Behrents RG, Kim KB, Kyung H-M, Buschang PH. Effects of screw and host factors on insertion torque and pullout strength. Angle Orthod. 2012;82(4):603–10.

    PubMed  Google Scholar 

  24. Chen C-H, Chang C-S, Hsieh C-H, Tseng Y-C, Shen Y-S, Huang I-Y, et al. The use of microimplants in orthodontic anchorage. J Oral Maxillofac Surg. 2006;64(8):1209–13.

    PubMed  Google Scholar 

  25. Park H-S, Lee S-K, Kwon O-W. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod. 2005;75(4):602–9.

    PubMed  Google Scholar 

  26. Kuroda S, Sugawara Y, Deguchi T, Kyung H-M, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131(1):9–15.

    PubMed  Google Scholar 

  27. Mortensen MG, Buschang PH, Oliver DR, Kyung H-M, Behrents RG. Stability of immediately loaded 3- and 6-mm miniscrew implants in beagle dogs–a pilot study. Am J Orthod Dentofacial Orthop. 2009;136(2):251–9.

    PubMed  Google Scholar 

  28. Liu SS-Y, Opperman LA, Buschang PH. Effects of recombinant human bone morphogenetic protein-2 on midsagittal sutural bone formation during expansion. Am J Orthod Dentofacial Orthop. 2009;136(6):768.e1–8; discussion 768–9.

    Google Scholar 

  29. Liu SS-Y, Opperman LA, Kyung H-M, Buschang PH. Is there an optimal force level for sutural expansion? Am J Orthod Dentofacial Orthop. 2011;139(4):446–55.

    PubMed  Google Scholar 

  30. Liu SS-Y, Kyung H-M, Buschang PH. Continuous forces are more effective than intermittent forces in expanding sutures. Eur J Orthod. 2010;32(4):371–80.

    PubMed  Google Scholar 

  31. Caraway D. Shear force at failure of immediately-loaded 3 mm and 6 mm miniscrew implants at six weeks post-insertion [Master’s thesis]. Saint Louis: Center for Advanced Dental Education, Saint Louis University; 2007.

    Google Scholar 

  32. Liou EJW, Pai BCJ, Lin JCY. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop. 2004;126(1):42–7.

    PubMed  Google Scholar 

  33. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofac Orthop. 2003;124(4):373–8.

    Google Scholar 

  34. Motoyoshi M, Uemura M, Ono A, Okazaki K, Shigeeda T, Shimizu N. Factors affecting the long-term stability of orthodontic mini-implants. Am J Orthod Dentofac Orthop. 2010;137(5):588.e1–5.

    Google Scholar 

  35. Crismani AG, Bertl MH, Celar AG, Bantleon H-P, Burstone CJ. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop. 2010;137(1):108–13.

    PubMed  Google Scholar 

  36. Chen Y, Kyung HM, Gao L, Yu W-J, Bae E-J, Kim S-M. Mechanical properties of self-drilling orthodontic micro-implants with different diameters. Angle Orthod. 2010;80(5):821–7.

    PubMed  Google Scholar 

  37. Liu T-C, Chang C-H, Wong T-Y, Liu J-K. Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofac Orthop. 2012;141(4):468–76.

    Google Scholar 

  38. Duaibis R, Kusnoto B, Natarajan R, Zhao L, Evans C. Factors affecting stresses in cortical bone around miniscrew implants. Angle Orthod. 2012;82;875–80.

    Google Scholar 

  39. Lee N-K, Baek S-H. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofac Orthop. 2010;138(1):8.e1–8.

    Google Scholar 

  40. Barros SE, Janson G, Chiqueto K, Garib DG, Janson M. Effect of mini-implant diameter on fracture risk and self-drilling efficacy. Am J Orthod Dentofac Orthop. 2011;140(4):e181–92.

    Google Scholar 

  41. Florvaag B, Kneuertz P, Lazar F, Koebke J, Zöller JE, Braumann B, et al. Biomechanical properties of orthodontic miniscrews. An in-vitro study. J Orofac Orthop. 2010;71(1):53–67.

    PubMed  Google Scholar 

  42. Holm L, Cunningham SJ, Petrie A, Cousley RRJ. An in vitro study of factors affecting the primary stability of orthodontic mini-implants. Angle Orthod. 2012;82(6):1022–8.

    Google Scholar 

  43. Poggio PM, Incorvati C, Velo S, Carano A. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod. 2006;76(2):191–7.

    PubMed  Google Scholar 

  44. Park H-S, Jeong S-H, Kwon O-W. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofac Orthop. 2006;130(1):18–25.

    Google Scholar 

  45. Wiechmann D, Meyer U, Büchter A. Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res. 2007;18(2):263–7.

    PubMed  Google Scholar 

  46. Wu T-Y, Kuang S-H, Wu C-H. Factors associated with the stability of mini-implants for orthodontic anchorage: a study of 414 samples in Taiwan. J Oral Maxillofac Surg. 2009;67(8):1595–9.

    PubMed  Google Scholar 

  47. DeCoster TA, Heetderks DB, Downey DJ, Ferries JS, Jones W. Optimizing bone screw pullout force. J Orthop Trauma. 1990;4(2):169–74.

    PubMed  Google Scholar 

  48. Wilmes B, Su Y-Y, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod. 2008;78(6):1065–70.

    PubMed  Google Scholar 

  49. Carano A, Lonardo P, Velo S, Incorvati C. Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Prog Orthod. 2005;6(1):82–97.

    PubMed  Google Scholar 

  50. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthod Orthognath Surg. 1998;13(3):201–9.

    Google Scholar 

  51. Kim J-W, Ahn S-J, Chang Y-I. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofac Orthop. 2005;128(2):190–4.

    Google Scholar 

  52. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17(1):109–14.

    PubMed  Google Scholar 

  53. Huja SS, Katona TR, Burr DB, Garetto LP, Roberts WE. Microdamage adjacent to endosseous implants. Bone. 1999;25(2):217–22.

    PubMed  Google Scholar 

  54. Martin RB. Fatigue microdamage as an essential element of bone mechanics and biology. Calcif Tissue Int. 2003;73(2):101–7.

    PubMed  Google Scholar 

  55. Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. J Orofac Orthop. 2008;69(2):121–34.

    PubMed  Google Scholar 

  56. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11(5):491–501.

    PubMed  Google Scholar 

  57. Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16(4):473–9.

    PubMed  Google Scholar 

  58. Viwattanatipa N, Thanakitcharu S, Uttraravichien A, Pitiphat W. Survival analyses of surgical miniscrews as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2009;136(1):29–36.

    PubMed  Google Scholar 

  59. Chaddad K, Ferreira AH, Geurs N, Reddy MS. Influence of surface characteristics on survival rates of mini-implants. Angle Orthod. 2008;78(1):107–13.

    PubMed  Google Scholar 

  60. Asscherickx K, Vannet BV, Bottenberg P, Wehrbein H, Sabzevar MM. Clinical observations and success rates of palatal implants. Am J Orthod Dentofacial Orthop. 2010;137(1):114–22.

    PubMed  Google Scholar 

  61. Hong C, Lee H, Webster R, Kwak J, Wu BM, Moon W. Stability comparison between commercially available mini-implants and a novel design: part 1. Angle Orthod. 2011;81(4):692–9.

    PubMed  Google Scholar 

  62. Meursinge Reynders RA, Ronchi L, Ladu L, van Etten-Jamaludin F, Bipat S. Insertion torque and success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop. 2012;142(5):596–614.e5.

    PubMed  Google Scholar 

  63. Maino BG, Maino G, Mura P. Spider screw: skeletal anchorage system. Prog Orthod. 2005;6(1):70–81.

    PubMed  Google Scholar 

  64. Schnelle MA, Beck FM, Jaynes RM, Huja SS. A radiographic evaluation of the availability of bone for placement of miniscrews. Angle Orthod. 2004;74(6):832–7.

    PubMed  Google Scholar 

  65. Huang L-H, Shotwell JL, Wang H-L. Dental implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2005;127(6):713–22.

    PubMed  Google Scholar 

  66. Min K-I, Kim S-C, Kang K-H, Cho J-H, Lee E-H, Chang N-Y, et al. Root proximity and cortical bone thickness effects on the success rate of orthodontic micro-implants using cone beam computed tomography. Angle Orthod. 2012;82(6):1014–21.

    PubMed  Google Scholar 

  67. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung H-M, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2007;131(4 Suppl):S68–73.

    PubMed  Google Scholar 

  68. Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Belastungsbedingte Reaktionen von Mini-Implantaten, welche für orthodontische Verankerungen verwendet werden. Clin Oral Implants Res. 2005;16(4):473–9.

    PubMed  Google Scholar 

  69. Mah J, Bergstrand F. Temporary anchorage devices: a status report. J Clin Orthod. 2005;39(3):132–6.

    Google Scholar 

  70. Jolley TH, Chung CH. Peak torque values at fracture of orthodontic miniscrews. J Clin Orthod. 2007;41(6):326–8.

    PubMed  Google Scholar 

  71. Wilmes B, Ottenstreuer S, Su Y-Y, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop/Fortschr Kieferorthop. 2008;69(1):42–50.

    Google Scholar 

  72. Liu SS-Y, Cruz-Marroquin E, Sun J, Stewart KT, Allen MR. Orthodontic mini-implant diameter does not affect in-situ linear microcrack generation in the mandible or the maxilla. Am J Orthod Dentofac Orthop. 2012;142(6):768–73.

    Google Scholar 

  73. Lim H-J, Eun C-S, Cho J-H, Lee K-H, Hwang H-S. Factors associated with initial stability of miniscrews for orthodontic treatment. Am J Orthod Dentofac Orthop. 2009;136(2):236–42.

    Google Scholar 

  74. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118(3):391–8.

    PubMed  Google Scholar 

  75. Brinley CL, Behrents R, Kim KB, Condoor S, Kyung H-M, Buschang PH. Pitch and longitudinal fluting effects on the primary stability of miniscrew implants. Angle Orthod. 2009;79(6):1156–61.

    PubMed  Google Scholar 

  76. Gracco A, Giagnorio C, Incerti Parenti S, Alessandri Bonetti G, Siciliani G. Effects of thread shape on the pullout strength of miniscrews. Am J Orthod Dentofac Orthop. 2012;142(2):186–90.

    Google Scholar 

  77. Chang JZ-C, Chen Y-J, Tung Y-Y, Chiang Y-Y, Lai EH-H, Chen W-P, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofac Orthop. 2012;141(3):279–88.

    Google Scholar 

  78. Hou S-M, Hsu C-C, Wang J-L, Chao C-K, Lin J. Mechanical tests and finite element models for bone holding power of tibial locking screws. Clin Biomech (Bristol Avon). 2004;19(7):738–45.

    Google Scholar 

  79. Johnson NL, Galuppo LD, Stover SM, Taylor KT. An in vitro biomechanical comparison of the insertion variables and pullout mechanical properties of 6.5-mm standard cancellous and 7.3-mm self-tapping, cannulated bone screws in foal femoral bone. Vet Surg. 2004;33(6):681–90.

    Google Scholar 

  80. Migliorati M, Signori A, Silvestrini-Biavati A. Temporary anchorage device stability: an evaluation of thread shape factor. Eur J Orthod. 2012;34(5):582–6.

    PubMed  Google Scholar 

  81. Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, et al. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35(3):401–5.

    PubMed  Google Scholar 

  82. Kim Y-K, Kim Y-J, Yun P-Y, Kim J-W. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod. 2009;79(5):908–14.

    PubMed  Google Scholar 

  83. Yerby S, Scott CC, Evans NJ, Messing KL, Carter DR. Effect of cutting flute design on cortical bone screw insertion torque and pullout strength. J Orthop Trauma. 2001;15(3):216–21.

    PubMed  Google Scholar 

  84. Bechtol C, Ferguson A, Lang P. Internal fixation with plates and screws. In: Bechtol CO, Ferguson AB, Laing PG, editors. Metals and engineering in bone and joint surgery. Williams & Wilkins Company, Baltimore; 1959. p. 162–4.

    Google Scholar 

  85. Koranyi E, Bowman CE, Knecht CD, Janssen M. Holding power of orthopedic screws in bone. Clin Orthop Relat Res. 1970;72:283–6.

    PubMed  Google Scholar 

  86. Boyle 3rd JM, Frost DE, Foley WL, Grady JJ. Torque and pullout analysis of six currently available self-tapping and “emergency” screws. J Oral Maxillofac Surg. 1993;51(1):45–50.

    PubMed  Google Scholar 

  87. Evans M, Spencer M, Wang Q, White SH, Cunningham JL. Design and testing of external fixator bone screws. J Biomed Eng. 1990;12(6):457–62.

    PubMed  Google Scholar 

  88. Wu S-W, Lee C-C, Fu P-Y, Lin S-C. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Med Eng Phys. 2012;34(7):797–805.

    PubMed  Google Scholar 

  89. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45(2):75–83.

    PubMed  Google Scholar 

  90. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 2004;15(4):381–92.

    PubMed  Google Scholar 

  91. Chang C-S, Lee T-M, Chang C-H, Liu J-K. The effect of microrough surface treatment on miniscrews used as orthodontic anchors. Clin Oral Implants Res. 2009;20(10):1178–84.

    PubMed  Google Scholar 

  92. Kim S-H, Lee S-J, Cho I-S, Kim S-K, Kim T-W. Rotational resistance of surface-treated mini-implants. Angle Orthod. 2009;79(5):899–907.

    PubMed  Google Scholar 

  93. Mo S-S, Kim S-H, Kook Y-A, Jeong D-M, Chung K-R, Nelson G. Resistance to immediate orthodontic loading of surface-treated mini-implants. Angle Orthod. 2010;80(1):123–9.

    PubMed  Google Scholar 

  94. Ikeda H, Rossouw PE, Campbell PM, Kontogiorgos E, Kontogirogos E, Buschang PH. Three-dimensional analysis of peri-bone-implant contact of rough-surface miniscrew implants. Am J Orthod Dentofacial Orthop. 2011;139(2):e153–63.

    PubMed  Google Scholar 

  95. Florvaag B, Kneuertz P, Lazar F, Koebke J, Zöller JE, Braumann B, et al. Biomechanical properties of orthodontic miniscrews. In Vitro Study J Orofac Orthop/. 2010;71(1):53–67.

    Google Scholar 

  96. Yano S, Motoyoshi M, Uemura M, Ono A, Shimizu N. Tapered orthodontic miniscrews induce bone-screw cohesion following immediate loading. Eur J Orthod. 2006;28(6):541–6.

    PubMed  Google Scholar 

  97. Cha J-Y, Takano-Yamamoto T, Hwang C-J. The effect of miniscrew taper morphology on insertion and removal torque in dogs. Int J Oral Maxillofac Implants. 2010;25(4):777–83.

    PubMed  Google Scholar 

  98. Mischkowski RA, Kneuertz P, Florvaag B, Lazar F, Koebke J, Zöller JE. Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area. Int J Oral Maxillofac Surg. 2008;37(10):948–54.

    PubMed  Google Scholar 

  99. Sakoh J, Wahlmann U, Stender E, Nat R, Al-Nawas B, Wagner W. Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants. 2006;21(4):560–6.

    PubMed  Google Scholar 

  100. Kim JW, Baek SH, Kim TW, Chang YI. Comparison of stability between cylindrical and conical type mini-implants. Angle Orthod. 2008;78(4):692–8.

    PubMed  Google Scholar 

  101. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res. 2001;12(5):423–32.

    PubMed  Google Scholar 

  102. Drago CJ, Del Castillo RA. A retrospective analysis of osseotite NT implants in clinical practice: 1-year follow-up. Int J Periodontics Restor Dent. 2006;26(4):337–45.

    Google Scholar 

  103. Heidemann W, Terheyden H, Gerlach KL. Analysis of the osseous/metal interface of drill free screws and self-tapping screws. J Craniomaxillofac Surg. 2001;29(2):69–74.

    PubMed  Google Scholar 

  104. Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J. 2001;1(6):408–14.

    PubMed  Google Scholar 

  105. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants. 1989;4(4):333–40.

    PubMed  Google Scholar 

  106. O’Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15(4):474–80.

    PubMed  Google Scholar 

  107. Melsen B. Mini-implants: where are we? J Clin Orthod. 2005;39(9):539–47, quiz 531–2.

    PubMed  Google Scholar 

  108. Giuliano Maino B, Pagin P, Di Blasio A. Success of miniscrews used as anchorage for orthodontic treatment: analysis of different factors. Prog Orthod. 2012;13(3):202–9.

    PubMed  Google Scholar 

  109. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop. 2006;67(3):162–74.

    PubMed  Google Scholar 

  110. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007;22(5):779–84.

    PubMed  Google Scholar 

  111. Cleek TM, Reynolds KJ, Hearn TC. Effect of screw torque level on cortical bone pullout strength. J Orthop Trauma. 2007;21(2):117–23.

    PubMed  Google Scholar 

  112. Koistinen A, Santavirta SS, Kröger H, Lappalainen R. Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws. Biomaterials. 2005;26(28):5687–94.

    PubMed  Google Scholar 

  113. Friberg B, Sennerby L, Gröndahl K, Bergström C, Bäck T, Lekholm U. On cutting torque measurements during implant placement: a 3-year clinical prospective study. Clin Implant Dent Relat Res. 1999;1(2):75–83.

    PubMed  Google Scholar 

  114. Hughes AN, Jordan BA. The mechanical properties of surgical bone screws and some aspects of insertion practice. Injury. 1972;4(1):25–38.

    PubMed  Google Scholar 

  115. Hung E, Oliver D, Kim KB, Kyung H-M, Buschang PH. Effects of pilot hole size and bone density on miniscrew implants’ stability. Clin Implant Dent Relat Res. 2012;14(3):454–60.

    PubMed  Google Scholar 

  116. Tehemar SH. Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. Int J Oral Maxillofac Implants. 1999;14(1):127–36.

    PubMed  Google Scholar 

  117. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.

    PubMed  Google Scholar 

  118. Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent. 1998;79(3):323–7.

    PubMed  Google Scholar 

  119. Park H-S, Lee Y-J, Jeong S-H, Kwon T-G. Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop. 2008;133(1):30–7.

    PubMed  Google Scholar 

  120. Gulsahi A, Paksoy CS, Ozden S, Kucuk NO, Cebeci ARI, Genc Y. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices. Dentomaxillofac Radiol. 2010;39(5):284–9.

    PubMed Central  PubMed  Google Scholar 

  121. Carrillo R, Rossouw PE, Franco PF, Opperman LA, Buschang PH. Intrusion of multiradicular teeth and related root resorption with mini-screw implant anchorage: a radiographic evaluation. Am J Orthod Dentofacial Orthop. 2007;132(5):647–55.

    PubMed  Google Scholar 

  122. Carrillo R, Buschang PH, Opperman LA, Franco PF, Rossouw PE. Segmental intrusion with mini-screw implant anchorage: a radiographic evaluation. Am J Orthod Dentofacial Orthop. 2007;132(5):576.e1–6.

    Google Scholar 

  123. Owens SE, Buschang PH, Cope JB, Franco PF, Rossouw PE. Experimental evaluation of tooth movement in the beagle dog with the mini-screw implant for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2007;132(5):639–46.

    PubMed  Google Scholar 

  124. Park H-S, Kwon T-G, Sung J-H. Nonextraction treatment with microscrew implants. Angle Orthod. 2004;74(4):539–49.

    PubMed  Google Scholar 

  125. Chen Y-J, Chang H-H, Huang C-Y, Hung H-C, Lai EH-H, Yao C-CJ. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res. 2007;18(6):768–75.

    PubMed  Google Scholar 

  126. Garfinkle JS, Cunningham Jr LL, Beeman CS, Kluemper GT, Hicks EP, Kim M-O. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop. 2008;133(5):642–53.

    PubMed  Google Scholar 

  127. Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120(3):252–77.

    PubMed  Google Scholar 

  128. Peterson J, Wang Q, Dechow PC. Material properties of the dentate maxilla. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(9):962–72.

    PubMed  Google Scholar 

  129. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop. 2006;129(6):721.e7–12.

    Google Scholar 

  130. Katranji A, Misch K, Wang H-L. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol. 2007;78(5):874–8.

    PubMed  Google Scholar 

  131. Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg. 2008;37(4):334–40.

    PubMed  Google Scholar 

  132. Farnsworth D, Rossouw PE, Ceen RF, Buschang PH. Cortical bone thickness at common miniscrew implant placement sites. Am J Orthod Dentofacial Orthop. 2011;139(4):495–503.

    PubMed  Google Scholar 

  133. Horner KA, Behrents RG, Kim KB, Buschang PH. Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofac Orthop. 2012;142(2):170–8.

    Google Scholar 

  134. Pickard MB, Dechow P, Rossouw PE, Buschang PH. Effects of miniscrew orientation on implant stability and resistance to failure. Am J Orthod Dentofac Orthop. 2010;137(1):91–9.

    Google Scholar 

  135. Woodall N, Tadepalli SC, Qian F, Grosland NM, Marshall SD, Southard TE. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop. 2011;139(2):e147–52.

    PubMed  Google Scholar 

  136. Daftari TK, Horton WC, Hutton WC. Correlations between screw hole preparation, torque of insertion, and pullout strength for spinal screws. J Spinal Disord. 1994;7(2):139–45.

    PubMed  Google Scholar 

  137. Heidemann W, Gerlach KL, Gröbel KH, Köllner HG. Influence of different pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. J Craniomaxillofac Surg. 1998;26(1):50–5.

    PubMed  Google Scholar 

  138. Gantous A, Phillips JH. The effects of varying pilot hole size on the holding power of miniscrews and microscrews. Plast Reconstr Surg. 1995;95(7):1165–9.

    PubMed  Google Scholar 

  139. Carney L. The effect of pilot holes on longitudinal miniscrew stability and bony adaptation [Master’s thesis]. Dallas: Texas A&M University Baylor College of Dentistry; 2013.

    Google Scholar 

  140. Okazaki J, Komasa Y, Sakai D, Kamada A, Ikeo T, Toda I, et al. A torque removal study on the primary stability of orthodontic titanium screw mini-implants in the cortical bone of dog femurs. Int J Oral Maxillofac Surg. 2008;37(7):647–50.

    PubMed  Google Scholar 

  141. Duyck J, Rønold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001;12(3):207–18.

    PubMed  Google Scholar 

  142. Berglundh T, Abrahamsson I, Lindhe J. Bone reactions to longstanding functional load at implants: an experimental study in dogs. J Clin Periodontol. 2005;32(9):925–32.

    PubMed  Google Scholar 

  143. Freire JNO, Silva NRFA, Gil JN, Magini RS, Coelho PG. Histomorphologic and histomorphometric evaluation of immediately and early loaded mini-implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2007;131(6):704.e1–9.

    Google Scholar 

  144. Vande Vannet B, Sabzevar MM, Wehrbein H, Asscherickx K. Osseointegration of miniscrews: a histomorphometric evaluation. Eur J Orthod. 2007;29(5):437–42.

    PubMed  Google Scholar 

  145. Ohmae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop. 2001;119(5):489–97.

    PubMed  Google Scholar 

  146. Massey CC, Kontogiorgos E, Taylor R, Opperman L, Dechow P, Buschang PH. Effect of force on alveolar bone surrounding miniscrew implants: a 3-dimensional microcomputed tomography study. Am J Orthod Dentofacial Orthop. 2012;142(1):32–44.

    PubMed  Google Scholar 

  147. Margelos JT, Verdelis KG. Irreversible pulpal damage of teeth adjacent to recently placed osseointegrated implants. J Endod. 1995;21(9):479–82.

    PubMed  Google Scholar 

  148. Rubenstein JE, Taylor TD. Apical nerve transection resulting from implant placement: a 10-year follow-up report. J Prosthet Dent. 1997;78(6):537–41.

    PubMed  Google Scholar 

  149. Farr DR, Whear NM. Intermaxillary fixation screws and tooth damage. Br J Oral Maxillofac Surg. 2002;40(1):84–5.

    PubMed  Google Scholar 

  150. Helldén L. Periodontal healing following experimental injury to root surfaces of human teeth. Scand J Dent Res. 1972;80(3):197–205.

    PubMed  Google Scholar 

  151. Chen Y-H, Chang H-H, Chen Y-J, Lee D, Chiang H-H, Yao C-CJ. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res. 2008;19(1):99–106.

    PubMed  Google Scholar 

  152. Hembree M, Buschang PH, Carrillo R, Spears R, Rossouw PE. Effects of intentional damage of the roots and surrounding structures with miniscrew implants. Am J Orthod Dentofacial Orthop. 2009;135(3):280.e1–9; discussion 280–1.

    Google Scholar 

  153. Kim SG. Implant-related damage to an adjacent tooth: a case report. Implant Dent. 2000;9(3):278–80.

    PubMed  Google Scholar 

  154. Brisceno CE, Rossouw PE, Carrillo R, Spears R, Buschang PH. Healing of the roots and surrounding structures after intentional damage with miniscrew implants. Am J Orthod Dentofacial Orthop. 2009;135(3):292–301.

    PubMed  Google Scholar 

  155. Alves Jr M, Baratieri C, Araújo MTS, Souza MMG, Maia LC. Root damage associated with intermaxillary screws: a systematic review. Int J Oral Maxillofac Surg. 2012;41(11):1445–50.

    PubMed  Google Scholar 

  156. Carrillo R, Buschang P. Palatal and mandibular miniscrew implant placement techniques. J Clin Orthod. 97 (12):737–43..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Buschang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buschang, P.H., Kim, K.B. (2014). Considerations for Optimizing the Use of Miniscrew Implants in Orthodontic Practice. In: Kim, K. (eds) Temporary Skeletal Anchorage Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55052-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55052-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55051-5

  • Online ISBN: 978-3-642-55052-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics