Molecular Mechanisms in Yeast Carbon Metabolism pp 141-167 | Cite as
Carbon Metabolism in Pathogenic Yeasts (Especially Candida): The Role of Cell Wall Metabolism in Virulence
Chapter
First Online:
- 2k Downloads
Abstract
Fungal pathogens are found in the natural environment and associated with living organisms including humans. The major life-threatening human fungal pathogens are Cryptococcus, Aspergillus, and Candida species (spp.). Among Candida spp., C. albicans is the most prevalent human pathogen responsible for a range of infections that differ in their severity according to the host’s immune status.
Keywords
Fungal Cell Wall Cell Wall Protein Cell Wall Biosynthesis Cell Wall Integrity Alternative Carbon Source
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Aebi M (2013) N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta dol 1833(11):2430--2437Google Scholar
- Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE Jr, Filler SG, Hube B (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4:e1000217PubMedCentralPubMedGoogle Scholar
- Alvarez FJ, Konopka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18:965–975PubMedCentralPubMedGoogle Scholar
- Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5:e1000612PubMedCentralPubMedGoogle Scholar
- Baek YU, Martin SJ, Davis DA (2006) Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall β-glycosidase Phr2. Eukaryot Cell 5:1550–1559PubMedCentralPubMedGoogle Scholar
- Bahnan W, Koussa J, Younes S, Rizk MA, Khalil B, Sitt SE, Hanna S, El-Sibai M, Khalaf RA (2012) Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell call chitin deposition. Mycopathologia 174:107–119PubMedGoogle Scholar
- Baker LG, Specht CA, Lodge JK (2011) Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot Cell 10:1264–1268PubMedCentralPubMedGoogle Scholar
- Barelle CJ, Priest CL, MacCallum DM, Gow NAR, Odds FC, Brown AJP (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971PubMedCentralPubMedGoogle Scholar
- Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Brown AJ, Odds FC, Gow NA (2006) Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 281:90–98PubMedGoogle Scholar
- Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJ, Odds FC, Gow NA (2005) Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280:23408–23415PubMedGoogle Scholar
- Becker JM, Kauffman SJ, Hauser M, Huang L, Lin M, Sillaots S, Jiang B, Xu D, Roemer T (2010) Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci USA 107:22044–22049PubMedCentralPubMedGoogle Scholar
- Ben-Ami R, Garicia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis P (2011) Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infec Dis 204:626–635Google Scholar
- Ben-Ami R, Kontoyiannis DP (2012) Resistance to echinocandins comes at a cost: the impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 3:95–98PubMedCentralPubMedGoogle Scholar
- Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808PubMedGoogle Scholar
- Brown DH Jr, Giusani AD, Chen X, Kumamoto CA (1999) Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662PubMedGoogle Scholar
- Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP (2006) Control of the Candida albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathog 2:0204–0210Google Scholar
- Bulawa CE, Miller DW, Henry LK, Becker JM (1995) Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci USA 92:10570–10574PubMedCentralPubMedGoogle Scholar
- Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2:886–900PubMedCentralPubMedGoogle Scholar
- Buurman ET, Westwater C, Hube B, Brown AJP, Odds FC, Gow NAR (1998) Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci USA 95:7670–7675PubMedCentralPubMedGoogle Scholar
- Cabib E (2009) Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both β(1-6)- and β(1-3)glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell 8:1626–1636PubMedCentralPubMedGoogle Scholar
- Cabib E, Farkas V, Kosík O, Blanco N, Arroyo J, McPhie P (2008) Assembly of the yeast cell wall: Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872PubMedCentralPubMedGoogle Scholar
- Cabib E, Blanco N, Grau C, Rodríguez-Peña JM, Arroyo J (2007) Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935PubMedGoogle Scholar
- Campbell RN, Leverentz MK, Ryan LA, Reece RJ (2008) Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochem J 414:177–187PubMedGoogle Scholar
- Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544PubMedCentralPubMedGoogle Scholar
- Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180PubMedCentralPubMedGoogle Scholar
- Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 101:5048–5052PubMedCentralPubMedGoogle Scholar
- Copping VMS, Barelle CJ, Hube B, Gow NAR, Brown AJP, Odds FC (2005) Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother 55:645–654PubMedGoogle Scholar
- de Groot PWJ, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796PubMedGoogle Scholar
- Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891PubMedGoogle Scholar
- Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A, Kurtz MB (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479PubMedCentralPubMedGoogle Scholar
- Ene IV, Cheng S-, Netea MG, Brown AJP (2013) Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells. Infect Immun 81:238–248PubMedCentralPubMedGoogle Scholar
- Ene IV, Adya AK, Wehmeier S, Brand AC, Maccallum DM, Gow NAR, Brown AJP (2012a) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14:1319–1335PubMedCentralPubMedGoogle Scholar
- Ene IV, Heilmann CJ, Sorgo AG, Walker LA, De Koster CG, Munro CA, Klis FM, Brown AJP (2012b) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12:3164–3179PubMedCentralPubMedGoogle Scholar
- Ene IV, Bennett RJ (2009) Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell 8:1909–1913PubMedCentralPubMedGoogle Scholar
- Ener B, Douglas LJ (1992) Correlation between cell-surface hydrophobicity of Candida albicans and adhesion to buccal epithelial cells. FEMS Microbiol Lett 99:37–42Google Scholar
- Fan J, Chaturvedi V, Shen S (2002) Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 55:336–346PubMedGoogle Scholar
- Fanning S, Xu W, Solis N, Woolford CA, Filler SG, Mitchell AP (2012) Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 11:896–904PubMedCentralPubMedGoogle Scholar
- Fleck CB, Schöbel F, Brock M (2011) Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. Int J Med Microbiol 301:400–407PubMedGoogle Scholar
- Fonzi WA (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J Bacteriol 181:7070–7079PubMedCentralPubMedGoogle Scholar
- Fradin C, Hube B (2006) Transcriptional profiling of Candida albicans in human blood. Microbe 1:76–80Google Scholar
- Fradin C, Thewes S, Zakikhany K, Albrecht A, Bader O, Kunze D, Hube B (2004) Transcriptional profiling of Candida albicans during infections. Mikologia Lekarska 11:157–163Google Scholar
- Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82PubMedGoogle Scholar
- Fujita M, Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821:1050–1058PubMedGoogle Scholar
- Fukuda Y, Tsai H-, Myers TG, Bennett JE (2013) Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun 81:1325–1333PubMedCentralPubMedGoogle Scholar
- Gelis S, de Groot PWJ, Castillo L, Moragues M-, Sentandreu R, Gómez M-, Valentín E (2012) Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence. Fungal Genet Biol 49:322–331PubMedGoogle Scholar
- Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412PubMedGoogle Scholar
- Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, Walker L, Jansen T, Jacobs L, Tsoni V, Brown GD, Odds FC, Van der Meer JW, Brown AJ, Kullberg BJ (2007) Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis 196:1565–1571PubMedCentralPubMedGoogle Scholar
- Gregori C, Glaser W, Frohner IE, Reinoso-Martín C, Rupp S, Schüller C, Kuchler K (2011) Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryot Cell 10:1694–1704PubMedCentralPubMedGoogle Scholar
- Gunasekera A, Alvarez FJ, Douglas LM, Wang HX, Rosebrock AP, Konopka JB (2010) Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z. Eukaryot Cell 9:1476–1483PubMedCentralPubMedGoogle Scholar
- Hall RA, Bates S, Lenardon MD, Maccallum DM, Wagener J, Lowman DW, Kruppa MD, Williams DL, Odds FC, Brown AJ, Gow NA (2013) The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog 9:e1003276PubMedCentralPubMedGoogle Scholar
- Hayek P, Dib L, Yazbeck P, Beyrouthy B, Khalaf RA (2010) Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Microbiol Res 165:250–258PubMedGoogle Scholar
- Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, Koster CG, de Koning LJ, Klis FM (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157:2297–2307PubMedGoogle Scholar
- Herrero AB, Magnelli P, Mansour MK, Levitz SM, Bussey H, Abeijon C (2004) KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 3:1423–1432PubMedCentralPubMedGoogle Scholar
- Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD (2010) Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother 54:1655–1664PubMedCentralPubMedGoogle Scholar
- Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—A sticky pursuit. Med Mycol 46:1–15PubMedCentralPubMedGoogle Scholar
- Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180PubMedGoogle Scholar
- Huang G (2012) Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 3:6Google Scholar
- Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 6:e1000806PubMedCentralPubMedGoogle Scholar
- Hube B (2006) Infection-associated genes of Candida albicans. Future Microbiol 1:209–218PubMedGoogle Scholar
- Jyothi Kumar M, Jamaluddin MS, Natarajan K, Kaur D, Datta A (2000) The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1. Proc Natl Acad Sci USA 97:14218–14223PubMedCentralGoogle Scholar
- Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG (2002) Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 70:5256–5258PubMedCentralPubMedGoogle Scholar
- Kamthan M, Kamthan A, Ruhela D, Maiti P, Bhavesh NS, Datta A (2013) Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans. Fungal Genet Biol 54:15–24PubMedGoogle Scholar
- Kamthan M, Mukhopadhyay G, Chakraborty N, Chakraborty S, Datta A (2012) Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-d-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans. Fungal Genet Biol 49:369–378PubMedGoogle Scholar
- Kapteyn JC, Hoyer LL, Hecht JE, Muller WH, Andel A, Verkleij AJ, Makarow M, Van Den Ende H, Klis FM (2000) The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611PubMedGoogle Scholar
- Kitamura A, Someya K, Hata M, Nakajima R, Takemura M (2009) Discovery of a small-molecule inhibitor of β-1,6-glucan synthesis. Antimicrob Agents Chemother 53:670–677PubMedCentralPubMedGoogle Scholar
- Klis FM, Sosinska GJ, De Groot PWJ, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028PubMedGoogle Scholar
- Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1):1–8PubMedGoogle Scholar
- Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and β(1 → 3)-glucan. J Biol Chem 270:1170–1178PubMedGoogle Scholar
- Kollár R, Reinhold BB, Petráková E, Yeh HJC, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall: β(1 → 6)glucan interconnects mannoprotein, β(1 → 3)-glucan, and chitin. J Biol Chem 272:17762–17775PubMedGoogle Scholar
- Konopka JB (2012) N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica (Cairo) 2012:489208Google Scholar
- Kvaal C, Lachke SA, Srikantha T, Daniels K, Mccoy J, Soll DR (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67:6652–6662PubMedCentralPubMedGoogle Scholar
- Lagorce A, Berre-Anton VL, Aguilar-Uscanga B, Martin-Yken H, Dagkessamanskaia A, François J (2002) Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. European J Biochem 269:1697–1707Google Scholar
- Lan C-, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA 99:14907–14912PubMedCentralPubMedGoogle Scholar
- Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290PubMedGoogle Scholar
- Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50:22–30PubMedCentralPubMedGoogle Scholar
- Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689PubMedCentralPubMedGoogle Scholar
- Lee KK, MacCallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NAR, Munro CA (2012) Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 56:208–217PubMedCentralPubMedGoogle Scholar
- Lenardon MD, Munro CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423PubMedCentralPubMedGoogle Scholar
- Lipinski T, Wu X, Sadowska J, Kreiter E, Yasui Y, Cheriaparambil S, Rennie R, Bundle DR (2012) A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 30:6263–6269PubMedGoogle Scholar
- Liu TT, Lee REB, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236PubMedCentralPubMedGoogle Scholar
- Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173PubMedCentralPubMedGoogle Scholar
- Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087PubMedCentralPubMedGoogle Scholar
- Lussier M, Sdicu AM, Shahinian S, Bussey H (1998) The Candida albicans KRE9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose. Proc Natl Acad Sci USA 95:9825–9830PubMedCentralPubMedGoogle Scholar
- Marcil A, Gadoury C, Ash J, Zhang J, Nantel A, Whiteway M (2008) Analysis of PRA1 and its relationship to Candida albicans-macrophage interactions. Infec Immun 76:4345–4358Google Scholar
- Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013PubMedGoogle Scholar
- Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hünniger K, Kurzai O (2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLoS ONE 8:e58613PubMedCentralPubMedGoogle Scholar
- Martínez AI, Castillo L, Garcerá A, Elorza MV, Valentín E, Sentandreu R (2004) Role of Pir1 in the construction of the Candida albicans cell wall. Microbiology 150:3151–3161PubMedGoogle Scholar
- Mattia E, Carruba G, Angiolella L, Cassone A (1982) Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. J Bacteriol 152:555–562PubMedCentralPubMedGoogle Scholar
- McKenzie CGJ, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NAR, Erwig LP (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658PubMedCentralPubMedGoogle Scholar
- Milewski S, Gabriel I, Olchowy J (2006) Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 23:1–14PubMedGoogle Scholar
- Mille C, Bobrowicz P, Trinel P-, Li H, Maes E, Guerardel Y, Fradin C, Martínez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S (2008) Identification of a new family of genes involved in β-1,2- mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 283:9724–9736PubMedGoogle Scholar
- Mio T, Kokado M, Arisawa M, Yamada-Okabe H (2000) Reduced virulence of Candida albicans mutants lacking the GNA1 gene encoding glucosamine-6-phosphate acetyltransferase. Microbiology 146:1753–1758PubMedGoogle Scholar
- Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada-Okabe H (1997a) Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in β-1,3-glucan synthesis. J Bacteriol 179:4096–4105PubMedCentralPubMedGoogle Scholar
- Mio T, Yamada-Okabe T, Yabe T, Nakajima T, Arisawa M, Yamada-Okabe H (1997b) Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. J Bacteriol 179:2363–2372PubMedCentralPubMedGoogle Scholar
- Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJP, Kurzai O, Hube B (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE 7:e52850PubMedCentralPubMedGoogle Scholar
- Mora-Montes HM, Netea MG, Ferwerda G, Lenardon MD, Brown GD, Misura AS, Kullberg BJ, O’Callaghan CA, Sheth CC, Odds FC, Brown AJP, Munro CA, Gow NAR (2011) Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect Immun 79:1961–1970PubMedCentralPubMedGoogle Scholar
- Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NAR, Flores-Carreón A, López-Romero E (2009) Protein glycosylation in Candida. Future Microbiol 4:1167–1183PubMedGoogle Scholar
- Munro CA (2013) Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv Appl Microbiol 83:145–172PubMedGoogle Scholar
- Munro CA, Richard ML (2012) The cell wall: glycoproteins, remodeling, and regulation. In: Calderone RA, Clancy CJ (eds) Candida and Candidiasis, 2nd edn. ASM Press, Washington D.C, pp 197–223Google Scholar
- Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA (2007) The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413PubMedCentralPubMedGoogle Scholar
- Munro CA, Bates S, Buurman ET, Hughes HB, Maccallum DM, Bertram G, Atrih A, Ferguson MA, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJ, Odds FC, Gow NA (2005) Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280:1051–1060PubMedCentralPubMedGoogle Scholar
- Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426PubMedGoogle Scholar
- Munro CA, Schofield DA, Gooday GW, Gow NA (1998) Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144:391–401PubMedGoogle Scholar
- Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL, Naglik JR (2012) Evaluation of the role of Candida albicans agglutinin-like sequence (ALS) proteins in human oral epithelial cell interactions. PLoS ONE 7:e33362PubMedCentralPubMedGoogle Scholar
- Nagatani K, Wang S, Llado V, Lau CW, Li Z, Mizoguchi A, Nagler CR, Shibata Y, Reinecker HC, Mora JR, Mizoguchi E (2012) Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis 18:1698–1710PubMedCentralPubMedGoogle Scholar
- Naseem S, Gunasekera A, Araya E, Konopka JB (2011) N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. J Biol Chem 286:28671–28680PubMedCentralPubMedGoogle Scholar
- Natarajan K, Datta A (1993) Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans. J Biol Chem 268:9206–9214PubMedGoogle Scholar
- Netea MG, Brown GD, Kullberg BJ, Gow NAR (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78PubMedGoogle Scholar
- Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van Der Meer JWM, Brown AJP, Kullberg BJ (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650PubMedCentralPubMedGoogle Scholar
- Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520PubMedCentralPubMedGoogle Scholar
- Nett JE, Crawford K, Marchillo K, Andes DR (2010) Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54:3505–3508PubMedCentralPubMedGoogle Scholar
- Odds FC (ed) (1988) Candida and Candidosis 2nd edn. Bailliere Tindall, LondonGoogle Scholar
- Onishi A, Sugiyama D, Kogata Y, Saegusa J, Sugimoto T, Kawano S, Morinobu A, Nishimura K, Kumagaia S (2012) Diagnostic accuracy of serum 1,3-ß-D-glucan for Pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol 50:7–15PubMedCentralPubMedGoogle Scholar
- Ostrosky-Zeichner L (2012) Invasive mycoses: diagnostic challenges. Am J Med 125:S14–S24PubMedGoogle Scholar
- Pardini G, De Groot PWJ, Coste AT, Karababa M, Klis FM, De Koster CG, Sanglard D (2006) The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem 281:40399–40411PubMedGoogle Scholar
- Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:0543–0557Google Scholar
- Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML (2008) Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45:1404–1414PubMedCentralPubMedGoogle Scholar
- Plumbridge JA (1989) Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol 3:505–515PubMedGoogle Scholar
- Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121PubMedGoogle Scholar
- Prill SK, Klinkert B, Timpel C, Gale CA, Schroppel K, Ernst JF (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560PubMedGoogle Scholar
- Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272:279–281PubMedGoogle Scholar
- Ram AFJ, Arentshorst M, Damveld RA, vanKuyk PA, Klis FM, van den Hondel CAMJJ (2004) The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology 150:3315–3326PubMedGoogle Scholar
- Rao KH, Ghosh S, Natarajan K, Datta A (2013) N-acetylglucosamine kinase, HXK1 is involved in morphogenetic transition and metabolic gene expression in Candida albicans. PLoS ONE 8:e53638PubMedCentralPubMedGoogle Scholar
- Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133PubMedCentralPubMedGoogle Scholar
- Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67PubMedCentralPubMedGoogle Scholar
- Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012PubMedCentralPubMedGoogle Scholar
- Sandai D, Yin Z, Selway L, Stead D, Walker J, Leach MD, Bohovych I, Ene IV, Kastora S, Budge S, Munro CA, Odds FC, Gow NA, Brown AJ (2012) The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. MBio 3:e00495–12PubMedCentralPubMedGoogle Scholar
- Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24Google Scholar
- Sengupta M, Datta A (2003) Two membrane proteins located in the Nag regulon of Candida albicans confer multidrug resistance. Biochem Biophys Res Commun 301:1099–1108PubMedGoogle Scholar
- Shepardson KM, Cramer RA (2013) Fungal cell wall dynamics and infection site microenvironments: signal integration and infection outcome. Curr Opin Microbiol S1369–5274(13):00035. doi: 10.1016/j.mib.2013.03.003 Google Scholar
- Shibata N, Kobayashi H, Suzuki S (2012) Immunochemistry of pathogenic yeast, Candida species, focusing on Mannan. Proc Jpn Acad Ser B Phys Biol Sci 88:250–265PubMedCentralPubMedGoogle Scholar
- Singh B, Datta A (1979) Induction of N-acetylglucosamine-catabolic pathway in spheroplasts of Candida albicans. Biochem J 178:427–431PubMedCentralPubMedGoogle Scholar
- Singh P, Ghosh S, Datta A (2001) Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway. Infect Immun 69:7898–7903PubMedCentralPubMedGoogle Scholar
- Singh V, Satheesh SV, Raghavendra ML, Sadhale PP (2007) The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genet Biol 44:563–574PubMedGoogle Scholar
- Smith RJ, Milewski S, Brown AJP, Gooday GW (1996) Isolation and characterization of the GFA1 gene encoding the glutamine: fructose-6-phosphate amidotransferase of Candida albicans. J Bacteriol 178:2320–2327PubMedCentralPubMedGoogle Scholar
- Smith TL, Rutter J (2007) Regulation of glucose partitioning by PAS Kinase and Ugp1 phosphorylation. Mol Cell 26:491–499PubMedGoogle Scholar
- Sohn K, Urban C, Brunner H, Rupp S (2003) EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47:89–102PubMedGoogle Scholar
- Soll DR (2009) Why does Candida albicans switch? FEMS Yeast Res 9:973–989PubMedGoogle Scholar
- Spellberg B, Ibrahim AS, Lin L, Avanesian V, Fu Y, Lipke P, Otoo H, Ho T, Edwards JE Jr (2008) Antibody titer threshold predicts anti-candidal vaccine efficacy even though the mechanism of protection is induction of cell-mediated immunity. J Infect Dis 197:967–971PubMedCentralPubMedGoogle Scholar
- Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538PubMedGoogle Scholar
- Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991PubMedCentralPubMedGoogle Scholar
- Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748PubMedGoogle Scholar
- Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848PubMedCentralPubMedGoogle Scholar
- Ueno K, Okawara A, Yamagoe S, Naka T, Umeyama T, Utena-Abe Y, Tarumoto N, Niimi M, Ohno H, Doe M, Fujiwara N, Kinjo Y, Miyazaki Y (2013) The mannan of Candida albicans lacking beta-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Med Mycol 51:385–395PubMedGoogle Scholar
- Umeyama T, Kaneko A, Watanabe H, Hirai A, Uehara Y, Niimi M, Azuma M (2006) Deletion of the CaBIG1 gene reduces β-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun 74:2373–2381PubMedCentralPubMedGoogle Scholar
- Vautier S, MacCallum DM, Brown GD (2012) C-type lectin receptors and cytokines in fungal immunity. Cytokine 58:89–99PubMedGoogle Scholar
- Vega K, Kalkum M (2012) Chitin, chitinase responses, and invasive fungal infections. Int J Microbiol 2012:920459PubMedCentralPubMedGoogle Scholar
- Walker LA, MacCallum DM, Bertram G, Gow NAR, Odds FC, Brown AJP (2009) Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet Biol 46:210–219PubMedCentralPubMedGoogle Scholar
- Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA (2008) Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4:e1000040PubMedCentralPubMedGoogle Scholar
- Wendland J, Schaub Y, Walther A (2009) N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Appl Environ Microbiol 75:5840–5845PubMedCentralPubMedGoogle Scholar
- Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227PubMedCentralPubMedGoogle Scholar
- Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2:e35PubMedCentralPubMedGoogle Scholar
- Yamada-Okabe T, Yamada-Okabe H (2002) Characterization of the CaNAG3, CaNAG4, and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these genes in the susceptibilities of cytotoxic agents. FEMS Microbiol Lett 212:15–21PubMedGoogle Scholar
- Yamada-Okabe T, Sakamori Y, Mio T, Yamada-Okabe H (2001) Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. European J Biochem 268:2498–2505Google Scholar
- Zhao X, Oh S-, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJP, Hoyer LL (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428PubMedGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2014