Skip to main content

Systems Biology: Developments and Applications

  • Chapter
  • First Online:
Molecular Mechanisms in Yeast Carbon Metabolism

Abstract

Systems biology relies on systems theory concepts and is applicable to both fundamental studies of cellular biology as well as applied research such as metabolic engineering. In this chapter, we map the context of systems biology developments and highlight its contribution in understanding the yeast carbon metabolism. Systems biology not only contributes towards the global overview of metabolism but also in combination with an integrative analysis approach facilitates the elucidation of molecular mechanisms. In particular we discuss the role of systems biology in unraveling the molecular details concerning glucose and galactose metabolism. In conclusion, this chapter provides an overview of the progress and impact of systems biology in carbon metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren R et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertalanffy LV (1950) An outline of general systems theory. Br J Philos Sci 1(2):134–165

    Google Scholar 

  • Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150(4):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Brauer MJ et al (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van den Brink J et al (2009) Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiol (Reading, Engl), 155(Pt 4):1340–1350

    Google Scholar 

  • Bro C et al (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  CAS  PubMed  Google Scholar 

  • Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Sci (NY) 295(5560):1664–1669

    Article  CAS  Google Scholar 

  • Daran-Lapujade P et al (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125–9138

    Article  CAS  PubMed  Google Scholar 

  • DeRisi JL (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686

    Article  CAS  PubMed  Google Scholar 

  • Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9(641):1–17

    Google Scholar 

  • Famili I et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Feder ME, Walser J-C (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18(4):901–910

    Article  CAS  PubMed  Google Scholar 

  • Fell DA (2010). Evolution of central carbon metabolism. Mol Cell 39(5):663–664

    Google Scholar 

  • Fendt S-M, Buescher JM et al (2010a) Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6(356):356

    PubMed Central  PubMed  Google Scholar 

  • Fendt S-M, Oliveira AP et al (2010b) Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 6(432):432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferea TL et al (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flick KM et al (2003) Grr1-dependent Inactivation of Mth1 mediates Glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flikweert MT et al (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257

    Article  CAS  PubMed  Google Scholar 

  • Förster J et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257

    Google Scholar 

  • Geistlinger L, Csaba G, Dirmeier S, Küffner R, Zimmer R (2013) A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucleic Acid Res 41(18):8452–8463

    Google Scholar 

  • Goffeau A et al (1996) Life with 6000 genes. Science 274(5287):546–567

    Article  CAS  PubMed  Google Scholar 

  • Hatzimanikatis V et al (2005) Exploring the diversity of complex metabolic networks. Bioinform (Oxf, Engl) 21(8):1603–1609

    Google Scholar 

  • Hauf J, Zimmermann FK, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzym Microb Technol 26:688–698

    Article  CAS  Google Scholar 

  • HerrgÃ¥rd MJ et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160

    Article  PubMed  Google Scholar 

  • HerrgÃ¥rd MJ et al (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635

    Article  PubMed Central  PubMed  Google Scholar 

  • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    Article  CAS  PubMed  Google Scholar 

  • Hong K-K et al (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108(29):12179–12184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard SC, Deminoff SJ, Herman PK (2006) Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Curr Genet 49(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683–687

    Article  CAS  PubMed  Google Scholar 

  • Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Jewett MC et al (2013) In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation. Mol Syst Biol 9(678):1–8

    Google Scholar 

  • De Jongh WA et al (2008) The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 101(2):317–326

    Google Scholar 

  • Kaniak A et al (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3(1):221–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karr JR et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kell DB et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  • Kolkman A et al (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006.0026

    Google Scholar 

  • Kresnowati MTAP et al (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2:49

    Google Scholar 

  • Kuhn KM et al (2001) Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol 21(3):916–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lashkari DA et al (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K-S et al (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(October):799–804

    Article  CAS  PubMed  Google Scholar 

  • Lehner B, Tischler J, Fraser AG (2005) Systems biology: where it is at in 2005. Genome Biol 6(8):338

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19(10):6720–6728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maris AJA Van et al (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Maris AJA Van et al (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094–2099

    Article  PubMed Central  PubMed  Google Scholar 

  • Mesarovic MD (1968) Systems theory and biology- view of a theoretician. In: Mesarovi MD (ed) Systems theory and biology. Springer, New York, pp 59–87

    Google Scholar 

  • Mirisola MG, Gallo A, De Leo G (2007) Ras-pathway has a dual role in yeast galactose metabolism. FEBS Lett 581(10):2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA 101(6):1572–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen J, Olsson L (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology 1. FEMS Yeast Res 2:175–181

    Article  CAS  PubMed  Google Scholar 

  • Nobel D (1960) Cardiac action and pacemaker potentials based on Hodgkin-huxley equations. Nature 5(188):495–497

    Article  Google Scholar 

  • Noor E et al (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AP et al (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8(623):623

    PubMed Central  PubMed  Google Scholar 

  • Ostergaard S et al (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283–1286

    Article  CAS  PubMed  Google Scholar 

  • Osterlund T et al (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7(1):36

    Article  PubMed Central  PubMed  Google Scholar 

  • Oud B, Flores C-L et al (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11:131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oud B, van Maris AJ A et al (2012a) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183–196

    Google Scholar 

  • Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA 102(8):2685–2689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picotti P et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494(7436):266–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pronk JT, Steensmays HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt MC et al (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19(7):4561–4571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151(3):1146–1152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22(10):1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Usaite R et al (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5(319):319

    PubMed Central  PubMed  Google Scholar 

  • Weng G (1999) Complexity in biological signaling systems. Science 284(5411):92–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westergaard SL et al (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96(1):134–145

    Article  CAS  PubMed  Google Scholar 

  • Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Briefings in Bioinf 2(3):258–270

    Article  CAS  Google Scholar 

  • Youk H, van Oudenaarden A (2009) Growth landscape formed by perception and import of glucose in yeast. Nature 462(7275):875–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaman S et al (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5(245):245

    PubMed Central  PubMed  Google Scholar 

  • Zampar GG et al (2013) Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 9(651):651

    PubMed Central  PubMed  Google Scholar 

  • Zhang J et al (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7(545):545

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from UNICELLSYS and European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, R., Lahtvee, PJ., Nielsen, J. (2014). Systems Biology: Developments and Applications. In: Piškur, J., Compagno, C. (eds) Molecular Mechanisms in Yeast Carbon Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55013-3_4

Download citation

Publish with us

Policies and ethics