Hidden in Plain View: Exploring the Knowledge Power of States

  • Katharina C. Below
  • Sarah Herweg
  • Ruth Knoblich
  • Krystin Unverzagt
Chapter
Part of the Global Power Shift book series (GLOBAL)

Abstract

Inspired by the notion of “structural power”, this paper presents an approach to conceptualizing the knowledge power of states. Knowledge power derives from the occupation of a favorable position in the global knowledge-structure. Regarding states as actors in the structure, four clusters of proxy variables serve to empirically map structural effects and dynamics: grass-roots, cutting-edge artifacts, infrastructural embeddedness and knowledge regimes. Empirical findings confirm initial theoretical considerations on the asymmetric and path-dependent nature of the knowledge-structure. Due to path-dependency, the structure exerts a hampering effect on change. It provides an inert environment, in which states face restraints on their way up to leading positions. As the asymmetric distribution of knowledge capacities derives from past differences in foundational knowledge indicators, power shifts cannot appear out of a sudden, and established powers are likely to prevail.

Keywords

Knowledge power Global knowledge-structure Asymmetry Path-dependency Technology clubs Digital divide Susan Strange Innovation Science and technology Cutting-edge artifacts Infrastructure 

References

  1. Adler, E. (1992). The emergence of cooperation: National epistemic communities and the international evolution of the idea of nuclear arms control. International Organization, Special Issue: Knowledge, Power, and International Policy Coordination, 46(1), 101–145.CrossRefGoogle Scholar
  2. Adler, E., & Haas, P. M. (1992). Conclusion: Epistemic communities, world order, and the creation of a reflective research program. International Organization (Special Issue: Knowledge, Power, and International Policy Coordination), 46(1), 367–390.Google Scholar
  3. Airports Council International. (2011). ACI Annual World Airport Traffic Report. Accessed 1 October, 2012, from http://www.aci.aero/Data-Centre/Annual-Traffic-Data/Passengers/2011-final.
  4. Altenburg, T., Schmitz, H., & Stamm, A. A. (2008). Breakthrough? China’s and India’s transition from production to innovation. World Development, 36(2), 325–344.CrossRefGoogle Scholar
  5. Archibugi, D., & Coco, A. (2005). Measuring technological capabilities at the country level: A survey and a menu for choice. Research Policy, 34, 175–194.CrossRefGoogle Scholar
  6. Bayly, C. A. (2004). The birth of the modern world, 1780-1914: Global connections and comparisons. Oxford: Blackwell.Google Scholar
  7. Beidleman, S. W. (2006). GPS versus Galileo: Balancing for position in space (CADRE paper 23). Maxwell: Air University Press.Google Scholar
  8. Below, K. C., Bösl, R., Franken, J.-P., Herweg, S., Knoblich, R., Krupp, M. (2012). Der Aufstieg der BIC-Staaten als Wissensmächte? Zeitschrift für Politik, 59(1), 3–23.Google Scholar
  9. Bureau International des Poids et Mesures. (2013). Comités consultatifs. Accessed March 3, 2013, from http://www.bipm.org/fr/committees/cc/.
  10. Butterfield, H. (1951). The origins of modern science. 1300-1800. London: G. Bell.Google Scholar
  11. Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., et al. (2009). Submarine cables and the oceans – connecting the world (UNEP-WCMC Biodiversity Series 31). Accessed March 1, 2013, from http://www.iscpc.org/publications/ICPC-UNEP_Report.pdf.
  12. Castellacci, F. (2008). Technology clubs, technology gaps and growth trajectories (MPRA Paper 27595). Accessed March 1, 2013, from http://mpra.ub.uni-muenchen.de/27595.
  13. Castellacci, F., & Archibugi, D. (2008). The technology clubs: The distribution of knowledge across nations. Research Policy, 37, 1659–1673.CrossRefGoogle Scholar
  14. Castells, M. (2000). The rise of the network society: The information age: Economy, society and culture. Cambridge: Blackwell.Google Scholar
  15. Chinn, M. D., & Fairlie, R. W. (2007). The determinants of the global digital divide: A cross-country analysis of computer and internet penetration. Oxford Economic Papers, 59(1), 16–44.CrossRefGoogle Scholar
  16. Clark, G., & Feenstra, R. (2003). Technology in the great divergence. In M. Bordo, A. M. Taylor, & J. G. Williamson (Eds.), Globalization in historical perspective (pp. 277–322). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  17. Crombie, A. C. (1961). Medieval and early modern science. Cambridge: Harvard University Press.Google Scholar
  18. Cruz-Jesus, F., Oliveira, T., & Bacao, F. (2012). Digital divide across the European Union. Information and Management, 49(6), 278–291.CrossRefGoogle Scholar
  19. De Solla Price, D. J. (1965). Is technology historically independent of science? A study in statistical historiography. Technology and Culture, 6(4), 553–568.CrossRefGoogle Scholar
  20. Dutta, S. (2012). The global innovation index 2011 (Accelerating growth and development). Fontainebleau: WIPO.Google Scholar
  21. ELSA, University of Bonn. (2013). List of particle accelerators. Accessed 1 May 2013, from http://www-elsa.physik.unibonn.de/accelerator_list.html.
  22. Everitt, C. W. F. (1992). Background to history: The transition from little physics to big physics in the gravity probe B relativity gyroscope program. In P. Galison & B. Hevly (Eds.), Big science: The growth of large-scale research (pp. 212–234). Stanford: Stanford University Press.Google Scholar
  23. FIPRA International. (2010). Standard setting in a changing global landscape. Report to the European Round Table of Industrialists (ERT). Accessed August 20, 2013, from http://www.ert.eu/sites/default/files/Standard%20setting%20in%20a%20changing%20global%20landscape%20Final%20Report_0.pdf.
  24. Friedman, T. (2009). The world is flat: The globalized world in the twenty-first century. London: Penguin.Google Scholar
  25. Frietsch, R., & Schüller, M. (Eds.). (2010). Competing for global innovation leadership: Innovation systems and policies in the USA, Europe and Asia. Stuttgart: Fraunhofer.Google Scholar
  26. Fritsch, S. (2011). Technology and global affairs. International Studies Perspectives, 12(1), 27–45.CrossRefGoogle Scholar
  27. Fritsch, S. (2014). Conceptualizing the ambivalent role of technology in international relations: Between systemic change and continuity. In: M. Mayer et al. (Eds.), The global politics of science and technology (Vol. 1. Concepts from international relations and other disciplines). Heidelberg: Springer.Google Scholar
  28. Galison, P., & Hevly, B. (1992). Big science: The growth of large-scale research. Stanford: Stanford University Press.Google Scholar
  29. Giegerich, B. (2007). Navigating differences: Transatlantic negotiations over Galileo. Cambridge Review of International Affairs, 20(3), 491–508.CrossRefGoogle Scholar
  30. Gilpin, R. (1981). War and change in international politics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Guillen, M. F., & Suarez, S. L. (2005). Explaining the global digital divide: Economic, political and sociological drivers of cross-national internet use. Social Forces, 84(2), 681–708.CrossRefGoogle Scholar
  32. Guzzini, S. (1993). Structural power: The limits of neorealist analysis. International Organization, 47(3), 443–478.CrossRefGoogle Scholar
  33. Haas, P. M. (1992). Introduction: Epistemic communities and international policy coordination. International Organization, 46(1), 1–35 (Special Issue: Knowledge, Power, and International Policy Coordination).Google Scholar
  34. Hall, R. A. (1983). The revolution in science 1500–1750. Harlow: Longman.Google Scholar
  35. Hargittai, E., & Shafer, S. (2006). Differences in actual and perceived online skills: The role of gender. Social Science Quarterly, 87, 432–448.CrossRefGoogle Scholar
  36. Headrick, D. (1981). The tools of empire: Technology and European imperialism in the nineteenth century. New York: Oxford University Press.Google Scholar
  37. Headrick, D. (1988). The tentacles of progress: Technology transfer in the age of imperialism, 1850-1940. New York: Oxford University Press.Google Scholar
  38. Headrick, D. R. (1991). The invisible weapon: Telecommunications and international politics 1851-1945. New York: Oxford University Press.Google Scholar
  39. Huff, T. (2003). The rise of early modern science: Islam, China and the West. Cambridge: Cambridge University Press.Google Scholar
  40. Hugill, P. J. (1999). Global communications since 1844: Geopolitics and technology. Baltimore: The Johns Hopkins University Press.Google Scholar
  41. Inkster, I. (2003). Technological and industrial change: A comparative essay. In R. Porter (Ed.), The Cambridge history of science (Vol. 4, pp. 845–882). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. ISO Homepage. (2013). Accessed September 30, 2013, from http://www.iso.org/iso/home/about.htm
  43. Renn, J., & Hyman, M. D. (2012). Survey: The globalization of modern science. In J. Renn (Ed.), The globalization of knowledge in history (Max Planck Research Library for the History and Development of Knowledge. Studies II, pp. 561–604). Accessed August 10, 2013, from http://www.edition-open-access.de/studies/1/index.html.
  44. Keast, R. L., Baker, D. C., & Brown, K. (2012). Sustainable Airport infrastructure: Balancing infrastructures for the Airport Metropolis. In Regional development: Concepts, methodologies, tools, and applications (pp. 1505–1515). Hershey, PA: Information Resources Management Association.Google Scholar
  45. Kende, M., & Hurpy, C. (2012). Assessment of the impact of internet exchange points - Empirical study of Kenya and Nigeria. Report for the Internet Society. Accessed January 3, 2013, from http://www.internetsociety.org/assessment-impact-internet-exchange-points-empirical-study-kenya-and-nigeria.
  46. Krasner, S. (Ed.). (1983). International regimes. Ithaca, NY: Cornell University Press.Google Scholar
  47. Krige, J. (2008). American hegemony and the postwar reconstruction of science in Europe. Cambridge: MIT Press.Google Scholar
  48. Krige, J., & Barth, K-H. (2006). Introduction: Science and technology in international affairs. In K. John & Barth, K.-H. (Eds.), Global power knowledge: Science and technology in international affairs (Osiris, pp. 1–21). Chicago: University of Chicago Press.Google Scholar
  49. Kühne, M. (2013). News from the BIPM - 2012. Metrologia, 50, 93–105.CrossRefGoogle Scholar
  50. Latour, B., & Woolgar, S. (1986). Laboratory life: The social construction of scientific facts. Princeton: Princeton University Press.Google Scholar
  51. Lazar, J., Kekic, L., Dorr Abreu, K., & Kenny, M. (2009). A new ranking of the world’s most innovative countries (An economics intelligence unit report). Sponsored by Cisco. Accessed January 4, 2014, from http://graphics.eiu.com/PDF/Cisco_Innovation_Complete.pdf.
  52. MacAskill, E., Borger, J., Hopkins, N., & Ball, J. (2013, June 21). GCHQ taps fibre-optic cables for secret access to world’s communication. The Guardian. Accessed August 18, 2013, from www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa.
  53. Mackinder, H. J. (1904). The geographical pivot of history. The Geographical Journal, 23(4), 421–437.CrossRefGoogle Scholar
  54. Mann, M. (1984). The autonomous power of the state: its origins, mechanisms and results. European Journal of Sociology/Archives Européennes de Sociologie, 25(02), 185–213.Google Scholar
  55. May, C. (1996). Strange fruit: Susan strange’s theory of structural power in the international political economy. Global Society, 10(2), 167–189.CrossRefGoogle Scholar
  56. Mayer, M. (2012). Exploring China’s rise as knowledge power. In E. Fels, K. Harmat, & J.-F. Kremer (Eds.), Power in the 21st century: International security and international political economy in a changing world (pp. 287–311). Berlin: Springer.CrossRefGoogle Scholar
  57. Mersits, U. (1987). From cosmic-ray and nuclear physics to high-energy physics. In A. Hermann, J. Krige, U. Mersits, D. Pestre, & L. Belloni (Eds.), History of CERN (Launching the European organization for nuclear research, Vol. 1, pp. 3–61). Amsterdam: North Holland.Google Scholar
  58. Mokyr, J. (2002). The gifts of Athena: Historical origins of the knowledge economy. Princeton: Princeton University Press.Google Scholar
  59. Norris, P. (2001). Digital divide: Civic engagement, information poverty, and the internet worldwide. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. OECD. (2010). Measuring innovation. A new perspective. OECD innovation strategy. Paris: OECD Publishing.Google Scholar
  61. Olesko, K. (2003). University. In J. L. Heilbron (Ed.), The Oxford companion to the history of modern science (pp. 813–815). Oxford: Oxford University Press.Google Scholar
  62. Osterhammel, J. (2009). The transformation of the world: A history of the 19th century. Princeton: Princeton University Press.Google Scholar
  63. Packet Clearing House. (2013). Internet exchange directory. Accessed June 27, 2014, from https://prefix.pch.net/applications/ixpdir/.
  64. Potthast, J. (2010). Science and technology studies. In D. Simon, A. Knie, & S. Hornbostel (Eds.), Handbuch Wissenschaftspolitik (pp. 91–105). Wiesbaden: VS.CrossRefGoogle Scholar
  65. Roelke, V. (2010). Auf der Suche nach der Politik in der Wissensproduktion: Plädoyer für eine historisch-politische Epistemologie. Berichte zur Wissenschaftsgeschichte, 33(2), 176–192.CrossRefGoogle Scholar
  66. Rosenau, J. (1990). Turbulence in world politics: A theory of change and continuity. Princeton: Princeton University Press.Google Scholar
  67. Ruggie, J. G. (1975). International responses to technology: Concepts and trends. International Organization, 29(3), 557–583.CrossRefGoogle Scholar
  68. Ryan, P. S., & Gerson, J. (2012). A primer on internet exchange points for policymakers and non-engineers (SSRN paper). Accessed March 1, 2013, from http://ssrn.com/abstract=2128103.
  69. Sainsbury of Turville, L. (2007). The race to the top: A review of government’s science and innovation policies. HM Treasury. Accessed March 11, 2013, from http://www.rsc.org/images/sainsbury_review051007_tcm18-103116.pdf.
  70. Saltzman, J., Chatterjee, S., & Raman, M. (2008). A framework for ICT standards creation: The case of ITU-T standard H.350. Information Systems, 33, 285–299.CrossRefGoogle Scholar
  71. Sassen, S. (2001). The global city: New York, London, Tokyo. Princeton: Princeton University Press.Google Scholar
  72. Schwab, K. (Ed.), (2011). The global competitiveness report 2011-2012. Accessed March 1, 2013, from http://www3.weforum.org/docs/WEF_GCR_Report_2011-12.pdf.
  73. Scott, K. (2003). Institutional developments within the Antarctic treaty system. The International and Comparative Law Quarterly, 52(2), 473–487.CrossRefGoogle Scholar
  74. Secretariat of the Antarctic Treaty. (2013). Final Reports of the Antarctic Treaty Consultative Meetings. Accessed June 27, 2014, from http://www.ats.aq/devAS/info_finalrep.aspx?lang=e&menu=2.
  75. Singh, JP. (2002). Introduction: Information technologies and the changing scope of global power and governance. In J. N. Rosenau & J. P. Singh (Eds.), Information technologies and global politics: The changing scope of power and governance (pp. 1–38). Albany: State University of New York Press.Google Scholar
  76. Soifer, H. (2008). State infrastructural power: Approaches to conceptualization and measurement. Studies in Comparative International Development (SCID), 43(3), 231–251.CrossRefGoogle Scholar
  77. Someswar, G., Manoj, T. P. S., Rao, C., & Chigurukota, D. R. (2013). Global navigation satellite systems and their applications. International Journal of Software and Web Sciences, 3(1), 17–23.Google Scholar
  78. Strange, S. (1988). States and markets. London: Pinter.Google Scholar
  79. Times Higher Education. (2008). Times Higher Education Ranking 2008. Accessed January 1, 2012, from http://www.timeshighereducation.co.uk/.
  80. Triggs, G. (2011). The Antarctic treaty system: A model of legal creativity and cooperation. In P. A. Berkman, M. A. Lang, D. W. H. Walton, & O. R. Young (Eds.), Science diplomacy: Antarctica, science, and the governance of international spaces (pp. 39–49). Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
  81. UNESCO. (2010). Science report. The current status of science around the world. Accessed March 1, 2013, from http://www.unesco.org/new/en/natural-sciences/science-technology/prospective-studies/unesco-science-report/unesco-science-report-2010/.
  82. UNESCO Institute for Statistics. (2014). Total R&D personnel per thousand employment (FTE). USNO & HMNAO. 2013. The Astronomical Almanac 2013. Accessed June 24, 2014, from http://data.uis.unesco.org/Index.aspx?queryid=61
  83. Van Dijk, J., & Hacker, K. (2003). The digital divide as a complex and dynamic phenomenon. Information Society, 19, 315–326.CrossRefGoogle Scholar
  84. Vicente, M. R., & López, A. J. (2010). A multidimensional analysis of the disability digital divide: Some evidence for internet use. The Information Society: An International Journal, 26(1), 48–64.CrossRefGoogle Scholar
  85. Weller, D., & Woodcock, B. (2013). Internet traffic exchange: Market developments and policy challenges (OECD digital economy papers 207). Paris: OECD.Google Scholar
  86. Wendt, A. (1995). Constructing international politics. International Security, 20(1), 71–81.CrossRefGoogle Scholar
  87. Wenzelhuemer, R. (2013). Connecting the nineteenth-century world: The telegraph and globalization. Cambridge: Cambridge University Press.Google Scholar
  88. Whitehead, A. N. (1926). Science and the modern world. Cambridge: Cambridge University Press.Google Scholar
  89. Wilsford, D. (1994). Path dependency, or why history makes it difficult but not impossible to reform health care systems in a big way. Journal of Public Policy, 14(3), 251–283.CrossRefGoogle Scholar
  90. World Bank. (2010). The changing wealth of nations: Measuring sustainable development in the new millennium. Washington, DC: World Bank.CrossRefGoogle Scholar
  91. World Bank Indicators. (2014). Public spending on education, total (% of government expenditure). Accessed June 24, 2014, from http://data.worldbank.org/indicator/SE.XPD.TOTL.GB.ZS.
  92. World Shipping Council. (2012). Top 50 World Container Ports. Accessed March 3, 2013, from http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports.
  93. WIPO. (2013). Global innovation index 2013. Accessed January 4, 2014, from http://www.globalinnovationindex.org/content.aspx?page=data-analysis.
  94. www.top500.org. (2012). Accessed 1 October, 2012, from http://www.top500.org/lists/.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Katharina C. Below
    • 1
  • Sarah Herweg
    • 2
  • Ruth Knoblich
    • 3
    • 4
  • Krystin Unverzagt
    • 4
  1. 1.University of KonstanzKonstanzGermany
  2. 2.Free University BerlinBerlinGermany
  3. 3.Ruhr-University BochumBochumGermany
  4. 4.Bonn UniversityBonnGermany

Personalised recommendations