Data-Dimension Reductions: A Comparison

Part of the Computational Risk Management book series (Comp. Risk Mgmt)


Data and dimension reduction techniques, and particularly their combination for Data-Dimension Reductions (DDR), have in many fields and tasks held promise for representing data in an easily understandable format. However, comparing methods and finding the most suitable one is a challenging task. In the previous chapter, we discussed the aim of dimension reduction in terms of three tasks. This chapter compares DDR combinations to financial performance analysis. To this end, after a general review of the literature on comparisons of data and dimension reduction methods, we discuss the aims and needs of DDR combinations in general and for the task at hand in particular.


Assure Expense Metaphor Resta Sammon 


  1. Bação, F., & Sousa Lobo, V. (2005). Self-organizing maps as substitutes for k-means clustering. Proceedings of the International Conference on Computational Science (ICCS 02) (pp. 476–483). Amsterdam: The Netherlands.Google Scholar
  2. Balakrishnan, P., Martha, C., Varghese, S., & Phillip, A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: a comparison with k-means clustering. Psychometrika, 59, 509–525.CrossRefGoogle Scholar
  3. Bertin, J. (1983). Semiology of graphics. WI: The University of Wisconsin Press.Google Scholar
  4. Bezdek, J. C., & Pal, N. R. (1995). An index of topological preservation for feature extraction. Pattern Recognition, 28(3), 381–391.CrossRefGoogle Scholar
  5. Bishop, C., Svensson, M., & Williams, C. (1998). Developments of the generative topographic mapping. Neurocomputing, 21(1–3), 203–224.CrossRefGoogle Scholar
  6. Carreira-Perpiñan, M. (2000). Reconstruction of sequential data with probabilistic models and continuity constraints. In S. Solla, T. Leen, & K. Müller (Eds.), Advances in neural information processing systems (Vol. 12, pp. 414–420)., MIT Press MA: Cambridge.Google Scholar
  7. Chen, L., & Buja, A. (2009). Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis. Journal of the American Statistical Association, 104, 209–219.CrossRefGoogle Scholar
  8. CIELab. (1986). Colorimetry. CIE Publication, No. , 15, 2.Google Scholar
  9. Cottrell, M., & Letrémy, P. (2005). Missing values: processing with the kohonen algorithm. Proceedings of Applied Stochastic Models and Data Analysis (ASMDA 05) (pp. 489–496). France: Brest.Google Scholar
  10. de Bodt, E., Cottrell, M., & Verleysen, M., (1999). Using the Kohonen algorithm for quick initialization of simple competitive learning algorithms. In Proceedings of the European Symposium on Artificial Neural Networks (ESANN 99). Bruges, Belgium.Google Scholar
  11. de Vel, O., Lee, S., & Coomans, D. (1996). Comparative performance analysis of non-linear dimensionality reduction methods. In D. Fischer & L. H-J. (Eds.), Learning from data: Artificial intelligence and statistics (pp. 320–345). Heidelberg, Germany: Springer.Google Scholar
  12. Deakin, E. (1976). Distributions of financial accounting ratios: some empirical evidence. The Accounting Review, 51, 90–96.Google Scholar
  13. Denny Squire, D., 2005. Visualization of cluster changes by comparing self-organizing maps. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 05). Hanoi, Vietnam, pp. 410–419.Google Scholar
  14. Duch, W., & Naud, A. (1996). Multidimensional scaling and kohonen’s self-organizing maps. Proceedings of the Conference on Neural Networks and their Applications (CNNA 16) (pp. 138–143). Poland: Szczyrk.Google Scholar
  15. Flexer, A. (1997). Limitations of self-organizing maps for vector quantization and multidimensional scaling. In M. Mozer (Ed.), Advances in Neural Information Processing Systems (Vol. 9, pp. 445–451). Cambridge, MA: MIT Press.Google Scholar
  16. Flexer, A. (2001). On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5(5), 373–384.Google Scholar
  17. Harrower, M., & Brewer, C. (2003). an online tool for selecting color schemes for maps. The Cartographic Journal, 40(1), 27–37.CrossRefGoogle Scholar
  18. Himberg, J. (2004). From insights to innovations: data mining, visualization, and user interfaces. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  19. Kaski, S. (1997). Data exploration using self-organizing maps. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  20. Kaski, S., & Kohonen, T. (1996). Exploratory data analysis by the self-organizing map: structures of welfare and poverty in the world. Proceedings of the International Conference on Neural Networks in the Capital Markets (pp. 498–507). London: World Scientific.Google Scholar
  21. Kaski, S. (1999). Fast winner search for som based monitoring and retrieval of high dimensional data. Proceedings of the IEEE International Conference on Artificial Neural Networks (ICANN 99) (pp. 940–945). London, UK: IEEE Press.CrossRefGoogle Scholar
  22. Kaski, S., Venna, J., & Kohonen, T. (2001). Coloring that reveals cluster structures in multivariate data. Australian Journal of Intelligent Information Processing Systems, 60, 2–88.Google Scholar
  23. Kiviluoto, K., & Oja, E. (1997). S-map: a network with a simple self-organization algorithm for generative topographic mappings. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in Neural Information Processing Systems (Vol. 10, pp. 549–555)., MIT Press MA: Cambridge.Google Scholar
  24. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59–69.CrossRefGoogle Scholar
  25. Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.CrossRefGoogle Scholar
  26. Latif, K., & Mayer, R. (2007). Sky-metaphor visualisation for self-organising maps. In Proceedings of the International Conference on Knowledge Management (I-KNOW 07). Graz, Austria.Google Scholar
  27. Lee, J., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Heidelberg, Germany: Springer, Information Science and Statistics Series.Google Scholar
  28. Lee, J., & Verleysen, M. (2009). Quality assessment of dimensionality reduction: rank-based criteria. Neurocomputing, 72(7–9), 1431–1443.CrossRefGoogle Scholar
  29. Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1), 702–710.CrossRefGoogle Scholar
  30. Lueks, W., Mokbel, B., Biehl, M., & Hammer, B. (2011). How to evaluate dimensionality reduction? In B. Hammer & T. Villmann (Eds.), Proceedings of the Workshop on New Challenges in Neural Computation. Machine Learning Reports: University of Bielefeld, Department of Technology, Frankfurt, Germany.Google Scholar
  31. van der Maaten, L., & Hinton, G. (2008). Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research, 9, 2579–2605.Google Scholar
  32. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). Berkeley, CA: University of California Press.Google Scholar
  33. Merkl, D., & Rauber, A. (1997). Alternative ways for cluster visualization in self-organizing maps. In Proceedings of the Workshop on Self-Organizing Maps (WSOM 97). Helsinki, Finland.Google Scholar
  34. Naud, A., & Duch, W. (2000). Interactive data exploration using MDS mapping. Proceedings of the Conference on Neural Networks and Soft Computing (pp. 255–260). Poland, Zakopane.Google Scholar
  35. Neumayer, N., Mayer, R., Poelzlbauer, G., & Rauber, A. (2007). The metro visualisation of component planes for self-organising maps. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 07). Orlando, FL, USA: IEEE Computer Society.Google Scholar
  36. Nikkilä, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., & Wong, G. (2002). Analysis and visualization of gene expression data using self-organizing maps. Neural Networks, 15(8–9), 953–966.CrossRefGoogle Scholar
  37. Pampalk, E., Rauber, A., & Merkl, D. (2002). Using smoothed data histograms for cluster visualization in self-organizing maps. In Proceedings of the International Conference on Artificial Neural Networks (ICANN 02) (pp. 871–876). Madrid, Spain.Google Scholar
  38. Pölzlbauer, G., Rauber, A., & Dittenbach, M. (2005). Advanced visualization techniques for self-organizing maps with graph-based methods. Proceedings of the International Symposium on Neural Networks (ISNN 05) (pp. 75–80). Chongqing, China: Springer.Google Scholar
  39. Pölzlbauer, G., Dittenbach, M., & Rauber, A. (2006). Advanced visualization of self-organizing maps with vector fields. Neural Networks, 19(6–7), 911–922.CrossRefGoogle Scholar
  40. Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantila, A., McNamara, J., et al. (Eds.). (2004). Neuroscience. Massachusetts: Sinauer Associates.Google Scholar
  41. Rauber, A., Paralic, J., & Pampalk, E. (2000). Empirical evaluation of clustering algorithms. Journal of Information and Organizational Sciences, 24(2), 195–209.Google Scholar
  42. Resta, M. (2009). Early warning systems: an approach via self organizing maps with applications to emergent markets. In B. Apolloni, S. Bassis, & M. Marinaro (Eds.), Proceedings of the 18th Italian Workshop on Neural Networks (pp. 176–184). Amsterdam: IOS Press.Google Scholar
  43. Samad, T., & Harp, S. (1992). Self-organization with partial data. Network: Computation in Neural Systems, 3, 205–212.CrossRefGoogle Scholar
  44. Sammon, J. (1969). A non-linear mapping for data structure analysis. IEEE Transactions on Computers, 18(5), 401–409.CrossRefGoogle Scholar
  45. Sarlin, P. (2012a). Chance discovery with self-organizing maps: discovering imbalances in financial networks. In Y. Ohsawa & A. Abe (Eds.), Advances in Chance Discovery (pp. 49–61). Heidelberg, Germany: Springer.Google Scholar
  46. Sarlin, P. (2012b). Visual tracking of the millennium development goals with a fuzzified self-organizing neural network. International Journal of Machine Learning and Cybernetics, 3, 233–245.CrossRefGoogle Scholar
  47. Sarlin, P. (2014). Data and dimension reduction for visual financial performance analysis. Information Visualization (forthcoming). doi: 10.1177/1473871613504102
  48. Sarlin, P., & Rönnqvist, S. (2013). Cluster coloring of the self-organizing map: An information visualization perspective. In Proceedings of the International Conference on Information Visualization (iV 13). London, UK: IEEE Press.Google Scholar
  49. Serrano-Cinca, C. (1996). Self organizing neural networks for financial diagnosis. Decision Support Systems, 17, 227–238.CrossRefGoogle Scholar
  50. Sun, Y., Tino, P., & Nabney, I. (2001). GTM-based data visualisation with incomplete data. Technical Report. Birmingham, UK: Neural Computing Research Group.Google Scholar
  51. Torgerson, W. S. (1952). Multidimensional scaling: i. theory and method. Psychometrika, 17, 401–419.CrossRefGoogle Scholar
  52. Trosset, M. (2008). Representing clusters: K-means clustering, self-organizing maps, and multidimensional scaling. Technical Report 08–03. Department of Statistics, Indiana University.Google Scholar
  53. Tufte, E. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.Google Scholar
  54. Ultsch, A. (2003b). U*-matrix: A tool to visualize clusters in high dimensional data. Technical Report No. 36. Germany: Deptartment of Mathematics and Computer Science, University of Marburg.Google Scholar
  55. Ultsch, A., & Siemon, H. (1990). Kohonen’s self organizing feature maps for exploratory data analysis. In Proceedings of the International Conference on Neural Networks (ICNN 90) (pp. 305–308). Dordrecht, the Netherlands.Google Scholar
  56. Ultsch, A., & Vetter, C. (1994). Self-organizing feature maps versus statistical clustering methods: A benchmark, University of Marburg. Research Report. FG Neuroinformatik & Kuenstliche Intelligenz. 0994.Google Scholar
  57. Ultsch, A. (2003a). Maps for the visualization of high-dimensional data spaces. Proceedings of the Workshop on Self-Organizing Maps (WSOM 03) (pp. 225–230). Kitakyushu, Japan: Hibikino.Google Scholar
  58. Venna, J., & Kaski, S. (2001). Neighborhood preservation in nonlinear projection methods. an experimental study. In Proceedings of the International Conference on Artificial Neural Networks (ICANN 01) (pp. 485–491). Vienna, Austria: Springer.Google Scholar
  59. Venna, J., & Kaski, S. (2006). Local multidimensional scaling. Neural Networks, 19, 889–899.CrossRefGoogle Scholar
  60. Venna, J., & Kaski, S. (2007). Comparison of visualization methods for an atlas of gene expression data sets. Information Visualization, 6(2), 139–154.CrossRefGoogle Scholar
  61. Vesanto, J. (1999). Som-based data visualization methods. Intelligent Data Analysis, 3(2), 111–126.CrossRefGoogle Scholar
  62. Vesanto, J., & Ahola, J. (1999). Hunting for correlations in data using the self-organizing map. Proceeding of the International ICSC Congress on Computational Intelligence Methods and Applications (CIMA 99) (pp. 279–285). Rochester, NY, USA: ICSC Academic Press.Google Scholar
  63. Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586–600.CrossRefGoogle Scholar
  64. Waller, N., Kaiser, H., Illian, J., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5–22.CrossRefGoogle Scholar
  65. Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRefGoogle Scholar
  66. Yin, H. (2008). The self-organizing maps: background, theories, extensions and applications. In J. Fulcher & L. Jain (Eds.), Computational intelligence: A compendium (pp. 715–762). Heidelberg, Germany: Springer.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre of Excellence SAFEGoethe University FrankfurtFrankfurt am MainGermany
  2. 2.RiskLab FinlandIAMSR Åbo Akademi UniversityTurkuFinland
  3. 3.Arcada University of Applied SciencesHelsinkiFinland

Personalised recommendations